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Chapter 1 1
Introduction

Software bugs are an inherent part of programming, often leading to unexpected behaviour and
system failures. Debugging these errors is a time-consuming process taking between 20-60%
of active work time [26], with programmers spending a highly skewed proportion of their time
identifying and resolving a small proportion of difficult bugs [19].

Type systems aim to alleviate some of this burden by classifying expressions and operations
that are allowed to work on them. This may be done statically at compile time or dynamically
during runtime. The expressions not conforming to the type system manifest themselves as
type errors.

In static typing, blame for type errors are typically localised to a single location in the code.
However, this localisation may be misleading, as the actual cause of the error might be rooted
in a broader context, for example in OCaml 65% of type errors related to multiple locations
[28]. Additionally, the errors only state the expected types, but with no explanation for why.

In dynamic typing, type errors are found later only appearing during runtime with specific
inputs. Additionally, they don’t generally specify any source code context which caused them.
However, such an error is accompanied by an evaluation trace, which can be more intuitive
[44], demonstrating concretely why values are ill-typed programs go wrong.

Aims: This project seeks to improve user understanding of type errors by explaining static
type errors more completely, and combining the benefits of static and dynamic type errors. I
consider three directions to achieve this, implementing three features to achieve them for use
in the Hazel language [2]:

1. Can we explain static type errors more completely, highlighting the code that determines
why the error expects it’s inconsistent type?

Being more complete, this would alleviate the issue of static errors being incorrectly
localised, while also helping build understanding of why the errors occur.

Solution: I devise a novel method: type slicing. Including formal mathematical foun-
dations built upon the formal Hazel calculus [24]. Additionally, it generalises to highlight
all code relevant to typing any expressions (not just errors).

2. Can we track source code which contributes to a dynamic type error?

This would provide missing source code context to understand how types involved in a
dynamic type error originate from the source code.

Solution: I devise a novel method: cast slicing. Also having formal mathematical
foundations. Additionally, it generalises to highlight source code relevant to requiring
any specific runtime casts.

3. Can we provide dynamic evaluation traces to explain static type errors?
This would provide an intuitive concrete explanation for static type errors.

Solution: I implement a type error witness search procedure, which discovers
inputs (witnesses) to expressions which cause a dynamic type error. This is based on
research by Seidel et al. [32] who devised and evidenced the usefulness of a similar
procedure for a subset of OCaml.

Hazel [2] is a functional, locally inferred, and gradually typed research language that allows
writing incomplete programs under active development at the University of Michigan. Being
gradually typed, it is a natural choice for this project, allowing both static and dynamic code to
coexist. I successfully demonstrate the utility of these three features in improving understanding
of both static and dynamic errors as well as how the two classes of errors interact and may be
linked automatically.
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let map : (Int -> Int) -> [Int] -> [Int] =
fun f -> fun 1 -> case 1
| [1 => []
| x::xs = (X)) @ map(f) (xs)
end
in map(fun x -> x)(?)

EXP Application | : Int inconsistent with expected type [Int]
Note: 7 represents a hole, an incomplete part of the program.

Figure 1.1: Example: Concatenation @ has been used instead of cons ::, but f(x) is
incorrectly localised as the error. Type slicing will give a full context highlighting the terms
involved in the error (the annotation, f (x) and @ operator). The search procedure could find
a witness (e.g. [0]) concretely evaluating to a dynamic error. The cast in the dynamic error
will contain a slice highlighting the source code that makes @ take lists as input. The results
are demonstrated in the evaluation section 4.9.2

1.1. Related Work

There has been extensive research into the field of programming languages and debugging,
attempting to understand what is needed [38], how developers fix bugs [21], and a plethora of
compiler improvements and tools. This project builds adds to this body of research in new
ways, focusing on the Hazel language which is itself an active research project being taken in
various directions but of particular note as a teaching language [20] for students; these features
can additionally help with building understanding of bidirectional type systems.

To my knowledge the ideas of type slicing and cast slicing are novel. However, they were
inspired, but differing substantially, to program slices, originally explored by Weiser [78], slices
in expression-based languages [43], dynamic program slicing [74] and type error slicing [58, 55],
which similarly relate to type systems.

The type witness search procedure is based upon Seidel et al. [32], but with significant
differences, which will be explained throughout.



Chapter 2 3
Preparation

In this chapter I present the technical background knowledge for this project: an introduction to
the type theory for understanding Hazel’s core semantics, an overview of Hazel implementation,
and notes on non-determinism. Following this, I present my software engineering methodology.

2.1. Background Knowledge
2.1.1. Type Systems

A type system is a lightweight formal mathematical method which categorises values into types
and expressions into types that evaluate to values of the same type. It is effectively a static
approximation to the runtime behaviour of a language. The following sections expect basic
knowledge formal methods of type systems in terms of judgements (appendix A reviews this).
Note that I will use partial functions to represent typing assumption contexts.

Dynamic Type Systems

Dynamic typing has purported strengths allowing rapid development and flexibility, evidenced
by their popularity [51, 13]. Of particular relevance to this project, execution traces are known
to help provide insight to errors [44], yet statically typed languages remove the ability to execute
programs with type errors, whereas dynamically typed languages do not.

A dynamically typed system can be implemented and represented semantically by use of
dynamic type tags and a dynamic type [71]. Then, runtime values can have their type checked at
runtime and cast between types. This suggests a way to encode dynamic typing via first-class®
cast expressions which maintain and enforce runtime type constraints alongside a dynamic type
written 7.

Cast expressions can be represented in the syntax of expression by e(r;=-75) for expression
e and types 71, 79, encoding that e has type 7 and is cast to new type 7». An intuitive way to
think about these is to consider two classes of casts:

e [Injections — Casts to the dynamic type e(r=-7). These are effectively equivalent to type
tags, they say that e has type 7 but that it should be treated dynamically.

e Projections — Casts from the dynamic type e(?=-7). These are type requirements, for
example the add operator could require inputs to be of type Int, and such a projection
would force any dynamic value input to be cast to Int.

Then injections meeting projections, v{(T3=-7=>T9) represent an attempt to perform a cast
(r1=72) on v. We check the cast is valid and perform if so:

71 18 castable to ™ 71 1S not castable to 7
U<T1:>?:>’7'2> — v ’U<7'1:>?:>7'2> — U<7’1:>?§/:>T2>

Compound type casts will be decomposed during evaluation. For example, applying v to
a function wrapped in a cast decomposes the cast into casting the applied argument and then
the result:
(f{r = =1 = 1)) (v) = (f(v(ri=71))(2=T3))

Or if f has the dynamic type:
(f(7=7 = 7)) (v) = (f(0(r{=7))(7=T))

Hence, casts around functions (type information) will be moved to the actual arguments
at runtime, meeting with casts casts on the argument, resulting in a cast error or a successful
cast.

! Directly represented in the language syntax as expressions.
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Gradual Type Systems

A gradual type system [34, 52] combines static and dynamic typing. Terms may be annotated
as dynamic, marking regions of code omitted from type-checking but still interoperable with
static code. For example, the following type checks:

let x : ? = 10; // Dynamically typed
x ++ "str" // Statically typed

Where ++ is string concatenation expecting inputs to be string. But would then cause a
runtime cast error when attempting to calculate 10 ++ "str".

It does this by representing casts as expressed previously. The language is split into two
parts:

e The external language — where static type checking is performed which allows annotating
expressions with the dynamic type.

e The internal language — where evaluation and runtime type checking is performed via
cast expressions.? The example above would reduce to a cast error:

10(Int="7+String) ++ "str"
For type checking, a consistency relation 7, ~ 75 is introduced. This is a weakening of the

type equality requirements in normal static type checking, allowing consistent types to be used
instead. Where every type 7 is consistent with the dynamic type 7.

/
7‘1NT2 TlNT]_ T2N7'2
T~ 7 T~T To ~ T1

TL — To ~ T{ = T}

Then typing rules can be written to use consistency instead of equality. For example,

application typing:

ket They: T

TP, To—>T Ty~ T

'+ 61(62) . Té

Where »_, extracts the argument and return types from a function type, used to account for
if I' ey : 7, where we treat 7 then as a dynamic function 7 »_, 7 — 7. Intuitively, e;(ez)
has type 74 if e; has type 71 — 75 or 7 (then treated as ? — 7), and ey has type 7 which is
consistent with 7{ and hence is assumed that it can be passed into the function.

But, for evaluation to work the static type information needs to be encoded into casts to be
used in the dynamic internal language, for which the evaluation semantics are defined. This is
done via elaboration, similarly to Harper and Stone’s approach to defining (globally inferred)
Standard ML [61] by elaboration to an explicitly typed internal language XML [68]. The
elaboration judgement I' F e ~» d : 7 reads as: external expression e is elaborated to internal
expression d with type 7 under typing context I'. For example, to insert casts around function
applications:

'Feg~diim Dhey~dy:im
T Ty =T Ty ~ T

TCEei(e): 7~ (di{n=m — 7)) (d(ms=1)) : T

If e; elaborates to d; with type 7 ~ 75 — 7 and ey elaborates to 7, with 7, ~ 75 then we
place a cast® on the function d; to 7 — 7 and on the argument d, to the function’s expected
argument type 7, to perform runtime type checking of arguments. Intuitively, casts must be
inserted whenever type consistency is used, but deciding which casts to insert is non-trivial
[29].

The runtime semantics of the internal expression is that of the dynamic type system dis-
cussed above (2.1.1). A cast is determined to succeed iff the types are consistent.

%i.e. the proposed dynamic type system above.
3This cast is required, as if 71 = 7 then we need a cast to realise that it is even a function. Otherwise
71 = 7o — 7 and the cast is redundant.
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Bidirectional Type Systems
A bidirectional type system [36] takes on a more algorithmic definition of typing judgements,
being more intuitive to implement. They also allow some amount of local type inference [62].
This is done in a similar way to annotating logic programs [79, p. 123], by specifying the
mode of the type parameter in a typing judgement, distinguishing when it is an input (type
checking) and when it is an output (type synthesis).
We express this with two judgements:

'Fe=r
Read as: e synthesises a type T under typing context I'. Type 7 is an output.
NFe<=r

Read as: e analyses against a type T under typing context I'. Type 7 is an input

When designing such a system care must be taken to ensure mode correctness [76]. Mode
correctness ensures that input-output dataflow is consistent such that an input never needs to
be guessed. For example the following function application rule is not mode correct:

I'kFey, <=1 —1m TDhke <=7
F|_€1(€2)¢7'2

We try to check e with input 71 which is not known from either an output of any premise nor
from the input to the conclusion, 75. On the other hand, the following is mode correct:

F|_61:>7'1—>’7'2 F|_62<:7'1
F|_61(€2)<:7'2

Where 71 is now known, being synthesised from the premise I' - e; = 7 — 7. As before, 7
is known as it is an input in the conclusion I' - e;(ey) < 7.

Such languages will have three obvious rules. That variables can synthesise their type,
being accessible from the typing assumptions. Annotated terms synthesise their type from the
annotation (after checking the validity). Subsumption: a synthesising term successfully checks
against that same type.

2.1.2. The Hazel Calculus

Hazel is a language that allows the writing of incomplete programs, evaluating them, and
evaluating around static and dynamic errors.

It does this via adding holes, which can both be typed and have evaluation proceed around
them seamlessly. Errors can be placed in holes allowing continued evaluation.

The core calculus [24] is a gradually and bidirectionally typed lambda calculus. Therefore
it has a locally inferred bidirectional external language with the dynamic type 7 elaborated to
an explicitly typed internal language including cast expressions.

The full semantics are documented in the Hazel Formal Semantics appendix B, with only
rules relevant holes discussed in this section. The combination of gradual and bidirectional
typing system is itself non-trivial, but only particularly notable consequences are mentioned
here.* The intuition should be clear from the previous gradual and bidirectional typing sections.

Syntax

The syntax, in Fig. 2.1, consists of types 7 including the dynamic type 7, external expressions

e including (optional) annotations, internal expressions d including cast expressions.
Notating ()* or (e)* for empty and non-empty holes respectively, where u is the metavariable

or name for a hole. Internal expression holes, ()% or (€)%, also maintain an environment o

mapping variables x to internal expressions d. These internal holes act as closures, recording
which variables have been substituted during evaluation.®

4The difficulties combining gradual and bidirectional typing are largely orthogonal to adding holes.
5This is required, as holes may later be substituted with terms containing variables, receiving their values
from the closure environment.
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Tu=blT—=T1]|7

O 1) [ e

ex=clx|Ax:Te|Ave|e(e) |
| (d)s | d(t=T) | d(T="+%T)

di=c|z|Xx:7d|d(d)]()

u
o

Figure 2.1: Syntax: types 7, external expressions e, internal expressions d. With x ranging
over variables, u over hole names, o over x — d internal language substitutions/environments,
b over base types and ¢ over constants.

External Language
Holes synthesise the dynamic type, a natural choice made possible by the use of gradual types:

SNEHole [Fe=7 SEHole

CF(e)* =7 FE()*“=7

One notable consequence of combining gradual and bidirectional typing is that the subsumption
rule in bidirectional typing is naturally extended to allow subsuming any terms of consistent
types:
Fr'te=717 71~7
'Fe<=rT
Of course, e should type check against 7 if it can synthesise a consistent type. The goal of type
consistency is to allow type treating terms as if they were of any consistent type.

ASubsume

Internal Language

The internal language is explicitly typed with typing judgement, A;T" - d : 7. Where A is a
hole context, mapping each hole metavariable u to it’s checked type 7% and it’s type context I'
under which the hole was typed.

Elaboration

Cast insertion is performed by elaborating to the internal language, and must also output an
additional context for holes: 'e <=7~ d: 7 4Aand'kFe = 7~ d-A.

The resulting hole context will record each hole’s original analysing type along with the
typing assumptions for its hole closure. Recording them instead as 7 would lose type informa-
tion.

A well-typed external expression elaborates to a well-typed internal expression consistent
with the external type.

Final Forms

The primary addition of Hazel is the addition of a new kind of final forms and values. This
is what allows evaluation to proceed around holes and errors. There are three types of final
forms:

e Values — Constants and functions.
e Bozed Values — Values wrapped in casts which cannot be further reduced.

e [ndeterminate Final Forms — Terms containing holes that cannot be directly evaluated,
e.g. holes or function applications where the function is indeterminate, e.g. ()*(1).

Importantly, any final form can be treated as a value (in a call-by-value context). For example,
they can be passed inside a (determinate) function: (Az.z)(()*) can evaluate to (|)“.

6 As originally required when typing the external language expression.
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Dynamics
A small-step contextual dynamics [30, ch. 5] is defined on the internal expressions to define a
call-by-value evaluation order, values in this sense are final forms.

Like the refined criteria [34], Hazel presents a rather different cast semantics designed
around ground types, that is, base types (Bool etc.) and least precise compound types, e.g.
Bool — Bool Wgrouna 7 — 7. This formalisation more closely represents common dynamically
typed language implementations which only use generic type tags like fun, corresponding to
the ground type ? — 7. However, the idea of type consistency checking when injections meet
projections remains the same, with projections/injections now being to/fro ground types.

Hole Substitutions

Holes are indexed by metavariables u, and can hence also be substituted. Hole substitution is
a meta action [d/u]ld’ meaning substituting each hole named wu for expression d in some term
d" with the holes environment. Importantly, the substitutions d can contain variables, whose
values are found by checking the holes environment, effectively making a delayed substitution.

See the following rule:
[d/ul()s = [ld/u]o]d

When substituting a matching hole u, we replace it with d and apply substitutions from the
environment o of u to d, after first substituting any occurrences of u in the hole’s environment
o. This corresponds to contertual substitution in contextual modal type theory [48].

This can be thought of as a fill-and-resume functionality, allowing incomplete program parts
to be filled during evaluation rather than only before evaluation.

2.1.3. The Hazel Implementation

The Hazel implementation [3] is written primarily in ReasonML and OCaml with approximately
65,000 lines of code using advanced OCaml features: GADTSs, functors, various preprocessors
[39, ch. 9, 10, 25], and custom let operators [14]. It is under very active development, with
much of the code being undocumented; this dissertation refers to the implementation as of
April 2025.

Language Features

Hazel implements the afore mentioned core calculus along with many relevant additional fea-
tures:”

e Lists — Linked lists, in the style of ML. By use of the dynamic type, Hazel can represent
heterogeneous lists, which may have elements of differing types.

e Tuples & Labelled Tuples® — Allowing compound terms to be constructed and typed
[57, ch. 11.7-8].

e Sum Types — Representing a value as one of many labelled variants, each of possibly
different types [57, ch. 11.10].

e Type Aliases — Binding a name to a type, used to improve code readability or simplify
complex type definitions.

e Pattern Matching — Checks a value against a pattern and destructures it accordingly,
binding its sub-structures to variable names.

e Explicit Polymorphism — System F style parametric polymorphism [57, ch. 23]. Where
explicit type functions bind arbitrary types to names, which may then be used in anno-
tations. Polymorphic functions are then applied to a type, uniformly giving the corre-
sponding monomorphic function. Implicit and ad-hoc polymorphic functions can still be
written as dynamic code, without use of type functions, but are untyped.

7 Additionally, Hazel supports other features, which do not concern this project.
8Merged towards the end of the project’s development.
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e Iso-Recursive Types — Types defined in terms of themselves, allowing the representa-
tion of data with potentially infinite or self-referential shape [57, ch. 22-23], for example
linked lists or trees.

2.1.4. Bounded Non-Determinism

Input generation for a witness search procedure [32] is a non-deterministic algorithm [80]. At
a high level, non-determinism can be represented declaratively by two ideas:

e Choice (<||>): Determines the search space, flipping a coin will return heads or tails.
e Fuailure (fail): The empty result, no solutions to the algorithm.

Suppose the non-deterministic result of the algorithm has type 7. These can be represented by
operations:
<|IlI>:7=>717—>71

fail: 7

Where <[ |> should be associative and fail should be a zero element, forming a monoid:
z <> (y <lI>2)=(z <II>y) <lI>2z fail <||> z =2 =1z <[||> fail

That is, the order of making binary choices does not matter, and there is no reason to choose
failure.

There are many proposed ways to represent and manage non-deterministic programs which I
considered, of which a monadic representation over a tree based state-space model was chosen as
a good balance of flexibility, simplicity, and familiarity to other Hazel developers. Appendix H
reasons and details other options considered: continuations, effect handlers, tagless final DSLs,
direct implementation.

Monadic Non-determinism: Some monads can be extended to represent non-determinism
by adding the choice and fail operators satisfying the usual laws. These operations interact
by bind distributing over choice, and fail being a left-identity for bind.

bind(my <I 1> my)(f) = bind(m1)(f) <I1> bind(my)(f)

bind(fail)(f) = fail

In this context, bind can be thought of as conjunction: if we can map each guess to another
set of choices, bind will conjoin all the choices from every guess. Figure 2.2 demonstrates how
flipping a coin followed by rolling a dice can be conjoined, yielding the choice of all pairs of
coin flip and dice roll.

Distributivity represents this interpretation: guessing over a combined choice is the same
as guessing over each individual choice and then combining the results. fail being the left
identity of bind states that you cannot make any guesses from the no choice (fail).

let coin = return(Heads) <||> return(Tails);
let dice = return(l) <||> ... <||> return(6);
let m = coin
>>= flip => // Flip a coin
dice
>>= roll => // Roll a dice
return((flip, roll)) // Return conjunction

Figure 2.2: Examples: Bind (>>=) as Conjunction
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2.2. Starting Point

Concepts

Only the basic foundations of most concepts in understanding Hazel were covered in Part IB
Semantics of Programming (and Part IT Types later). The concept of gradual typing briefly
appeared in Part IB Concepts of Programming Languages, but was not formalised. Monads
and non-determinism were also present in this course, but not their intersection.

Tools and Source Code

My only experience in OCaml was from the Part IA Foundations of Computer Science course.
This project builds directly upon the open-source Hazel language codebase [3]. The type
witness search procedure is inspired by Seidel et al. [32], however my implementation differs

significantly, being applied to Hazel rather than OCaml. Three (DFS, BFS, BDFS) searching
methods for monadic non-determinism are based on Spivey [53] with minor changes.

2.3. Requirements Analysis

The motivation for this project was a desire to assist programmers by improving type error
debugging. Hazel was naturally as we can both static and dynamic aspects together. To achieve
this, three features were to be implemented:

1. A more complete highlighting system for static type errors.
2. A (complete) source code highlighting system for dynamic errors.
3. Automated discovery of dynamic witnesses for static errors.

The first aim is not present in the project proposal, but naturally followed from the direction
that the theorising of cast slicing took.

The first two features required novel solutions and theory. After this design, a set of
core goals and extensions were specified. Most extensions relate to maintainability of code,
conciseness of slices, witness coverage improvements, and usability (Ul improvements). The
goal was to devise and implement the features to an extent that proves their potential, with
less focus on user interface.

Core Goals: Create/translate a corpus of ill-typed Hazel programs for evaluation usage. The
witness search procedure must have reasonable coverage (> 75%) in a time suitable for inter-
active debugging (30s) over the corpus. Implement synthesis and analysis type slice theories
(section 3.1.4, 3.1.5), and cast slice theory (section 3.2) including basic UI highlighting of the
source code.

Implement contribution slice theory (section 3.1.6). Allow customisable wit-
ness instantiation ordering. (Maintainability) Segregate type slicing logic from type checking
semantics. Segregate cast slicing logic from transition semantics. (Conciseness) Error slices
(*). Minimised error slices (**).

Low-Priority Extensions: (Coverage) Extended pattern instantiation (**). (Usability)
Trace visualisation & compression. Graphs for cast dependence. UI to select sub-parts of
slices (*).

Marked extensions were added after the 1st (*) or 2nd (**) evaluation.

Each goal and extension must be achieved for a sufficient subset of Hazel, with features
classified according to the MoSCoW method [35] in fig. 2.3.

2.4. Software Engineering Tools and Techniques

Methodology: Due to the high level of uncertainty and risk in devising new theories, a spiral
development model was followed. Each iteration refined the implementation through defined
milestones (see project proposal) and repeated evaluation (fig. 2.4). Further extensions were
prioritised based on their risk of scheduling-overruns.



2.4 Software Engineering Tools and Techniques 10

Class Features

Must Implement Base types: their constants & operations, lists, functions, bindings,
type aliases, tuples, sum types & constructors; holes, casts.
Pattern matching

Could Implement  labelled tuples (*), type functions, recursive types.

Won't Implement  Tests, deferrals, probes (*), filters, live literals.

(*) New features later merged from main branch not present in Hazel when the project proposal
was written.

Figure 2.3: Hazel Subsets to Implement for

Re-evaluate with
Implement L.
. refined criteria.
improvements

Core goals met.

Plan improvements . . X
. Formalise slicing
& new extensions, Implement

L. . theories. Defi . ..
prioritised on risk. eor1e§ eime highest priority
. evaluation .
Refine evaluation extensions

.. criteria.
criteria.

extensions,
priotise on risk.

Plan further

Evaluate success.
Core goals not Implement core
met (< 75% goals

coverage).

Evaluate completed
extensions

Figure 2.4: Phases of development

Hazel Codebase & Interaction: The Hazel codebase is extensive (65k lines), with much
of it being undocumented. As such, interaction with the Hazel development team was required
to clarify workings. Equally, I found and raised issues on bugs throughout, some being fixed
by myself and later merged into the main development branch. I re-use their existing build,
formatting, and deployment systems and conform with their coding standards.

Version Control & Merges: Git and GitHub were used for version control and backups.
Hazel is a very active research project, so new features were added over the course of developing
this project. These updates were regularly merged into my project, often requiring extensive
conflict resolution. 18 hours were spent entirely on merges, see appendix I for a list.

Continuous Integration & Deployment: The main branch of this project is integrated
with Hazel’s continuous integration and deployment system. Therefore, the main branch of
this project can be accessed at https://hazel.org/build /witnesses-type-slicing/.?

Testing: Hazel performs it’s testing by manually listing code samples with errors labelled by
comments. Or, more recently, shifting towards unit regression tests using the Alcotest package
[1]. T reuse these to ensure type checking and evaluation remains correct. However, as slicing
involves random term IDs, for this I use the earlier method of testing directly within the editor.

Tools: No new dependencies were introduced into Hazel, instead existing dependencies were
used, e.g. Js_of_ocaml [5] for regex matching, Jane Street Base.Sequence [4] for streams.
However, micro-benchmarking of the search procedure was performed using Bechamel [10].

Licences: Hazel is open-source available under an MIT licence. The source OCaml corpus
of ill-typed programs [27] translated into Hazel is freely available under a Creative Commons
Zero (CCO) licence. I again license the project with an MIT licence.

9This is continuously deployed. New functionality implemented after graduation (04/06/25) may be present
in future.
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Implementation

This section details the slicing theories developed and implementations of type slicing, cast
slicing, and the search procedure.

3.1. Type Slicing Theory

I developed a novel method, type slicing, to aid programmers in understanding how a bidi-
rectional type system works. First, I define typing slices. Then, three slicing criteria, each
associating typing derivations with different explanatory slices.

The first two criteria give insight on the synthesised and analysed type contributions. The
third on any code contributing in any way to a term’s type.

The second and third criterion were very challenging to formalise, requiring non-obvious
mathematical machinery: context typing slices (section 3.1.2), checking contexts (appendix C.4),
and type-indezed slices (section 3.1.3). Only the basic definitions are given here, the full theory
is found in appendix C.

3.1.1. Expression Typing Slices

First, I introduce what slices are in this context. The aim is to provide a formal representation
of term highlighting.

Term Slices

A term slice is a term with some sub-terms omitted. The omitted terms are those that are not
highlighted. For example if my slicing criterion is to omit terms which are typed as Int, then
the following expressions highlights as:

(Az:Int.Ay:Bool. z)(1)

Omitted sub-terms are replaced by a gap term, notated []. Representing the example above,
we get:
(AL]. Ay : Bool. [)([J)

We can then define a precision partial order [82] on term slices: ¢; C ¢, meaning ¢ is less
or equally precise than ¢,. That is, ¢; matches ¢ structurally except that some sub-terms may
be gaps. For example:

OCUO4+U0OC14+0CE1+2

Lattice Structure: For any complete term t (having no gaps), the slices of ¢ form a bounded
lattice structure [81]. That is, every pair <1, ¢ has a join ¢ U ¢ and meet ¢; M. In general,
not all slices slices have joins: 114 2, but do have meets as [] C ¢ for all s.

Typing Assumption Slices
Expression typing is performed given a set of typing assumptions. Therefore, in addition, we
also desire a slice taking the relevant assumptions. Typing assumptions are partial functions
mapping variables to types (see appendix A).

Hence, their slices are partial functions to type slices. Such that, a slice maps no more
variables to no more precise types. This, and meets and joins, can be defined pointwise:

Definition 1 (Typing Assumption Slice Precision). For typing assumption slices v1,vs. Where
dom(f) is the set of variables for which a partial function f is defined:

7 E vy <= dom(y;) C dom(yz) and Vo € dom(v;). y1(x) C vo(z)

Definition 2 (Typing Assumption Slice Joins and Meets). For typing slices v1,%2, and any
variable x:

If v(z) = L then (y1 Uye)(x) = y(z) and (v M) (z) = L, analogously if vo(x) = L.
Otherwise, (71 U2)(x) =y (z) U ye(z).

Again, slicing complete typing assumptions I' forms a bounded lattice. In general, some
slices have no join: consider z : Int and x : String.
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Expression Typing Slices

Finally, an expression typing slice, p, is a pair, 7, of a term slice and a typing slice. Preci-
sion, joins and meets, can be extended componentwise to term typing slices with all the same
properties.

Typing: FEzxpression slices can be type checked under the type assumption slices by replacing
gaps [ by: holes of any metavariable ()* in ezpressions, fresh variables in patterns, and the
dynamic type in types. Notated by [-].

Definition 3 (Expression Typing Slice Type Checking). For expression typing slice <7 and
type . yEs =71 iff [Y]F ] = 7 and vt <=1 iff [v] F [s] < 7.

3.1.2. Context Typing Slices

Next, some of an expression’s type might be enforced by the surrounding context. For exam-
ple, the type of the underlined expression below is enforced by the surrounding highlighted
annotation:

(Az.()*) : Bool — Int

Contexts and Their Slices

We represent these surrounding contexts by a term context C, which marks ezxactly one sub-
term as O. Where C{t} substitutes term ¢ for the mark O in C, only allowed if the marked
position expects a term of the same class as t (pattern Pat, type Typ, or expression Exp).
Notate the classes by C : X — Y. Context composition can be defined as substituting contexts
into contexts if their classes match. It is crucial that composition is defined syntactically, and
not pointwise, allowing syntactic deconstruction of contexts (used in AFun rule in appendix
fig. C.2).

These extend to context slices notated ¢ analogously to term slices. However, the precision
relation C is more restrictive, requiring the mark O to remain in the same structural position.
For example: O(L]) C O(1), but O IZ O(1). Concisely defined pointwise:

Definition 4 (Context Precision). Ifc: X — Y and ¢’ : X — Y are context slices, then ¢’ T ¢ if
and only if, for all terms t of class X, that '{t} C c{t}.

We find that filling contexts preserves the precision relations both on term slices and context
slices:

Proposition 1 (Context Filling Preserves Precision). For context slice ¢ : X — Y and term
slice ¢ of class X. Then if we have slices ' C ¢, ¢/ T ¢ then also ¢'{¢'} C ¢{s}.

Joins and meets can be defined pointwise as before, still forming bounded lattices over
complete contexts. The lattice bottom is the purely structural context, consisting of only gaps
with the mark in the correct position. In general, in addition to joins, not all contexts have
meets: O [ O(0).

Typing Assumption Contexts and Their Slices

The accompanying typing notion can be represented by endomorphisms on typing assumption
slices. These functions represents which relevant typing assumptions must be added, and those
safely removable when typing an expression within a context slice.

Precision, joins, and meets can be defined pointwise, forming bounded lattices on complete
functions as usual. The bottom element being the constant function to the empty typing
assumptions. Again, such functions are monotone:

Proposition 2 (Function Application Preserves Precision). For typing assumption slice v and
typing assumption context slice f. Then if we have slices v' T ~y, f' T f then also f'(7') C f(7).

Context Typing Slices

Finally, an expression context typing slice, p is a context slice with each sub-context recursively
tagged with typing assumption context slices. Lattice relations are defined componentwise.
Composition again must be carefully defined syntactically (appendix definition 37).
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Type Checking: An analogous [-] translation can be defined.
3.1.3. Type-Indexed Slices

Decomposing slices by their type is required for cast slicing and useful in calculating slices ac-
cording to analysis slices and hence also contribution slices. For example consider the following
context slice explaining why the underlined term analyses Bool — Int:

(Az.()*) : Bool — Int

This would be tagged with the type Bool — Int where a sub-slice considering only the Int
return type (omitting the Bool annotation) can be extracted:

(Az.()*) : Bool — Int

This section will only consider context slices, but term slices are type-indexed analogously.

The main property that indexed-slices should maintain is that slices can be reconstructed
from their sub-parts. Joining the sub-slices will produce the full type. As sub-slices may slice
different regions of code, we pair them with contexts which place the sub-slices within the same
context, making them join-able.

Definition 5 (Type-Indexed Context Typing Slices). Syntactically defined:
Su=p|p*xS >pxS
With any S only being valid if it has a full slice. The full slice of 8, notated S, is defined:

p=p

PradS— prxS=poS UpoSy

Then left (incremental) composition and right (global) composition can be defined, by
composing at the upper type constructor or at the leaves respectively:

Definition 6 (Type-Indexed Context Typing Slice Composition). For type-indexed context
typing slices 8§ and S". If S =p and 8" =p':

plop=p'op  pop'=pop
If S =pand 8" = py xS — py xSy
Sod& = (pop)) xS = (popy)* S,
If§ =p1 81 — po xSy
SoS8" =px($108") = pr*(Sy08’)

This definition stems from it representing regular context typing slice composition over its
full slices.

Proposition 3 (Type-Indexed Composition Preserves Full Slice Composition). For type-indezed
slices 8 and §': o
Sod" =808

Application, notated |>, can be defined similarly, converting indexed context slices into
valid indexed expression slices. The opposite direction is more difficult and can be found in
appendix (appendix C.3.4).
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3.1.4. Criterion 1: Synthesis Slices

Synthesis slices aim to explain why an expression synthesises a type. They omit all sub-terms
which analyse against a type retrieved from synthesising some other part of the program. For
example, the following term synthesises a Bool — Bool type, and the variable x : Int and
argument are irrelevant:

(Az:Int. Ay :Bool. y)(1)

Definition 7 (Synthesis Slices). For a synthesising expression, I' - e = 1. A synthesis slice
is an expression typing slice <7 of €' which also synthesises T, that is, [Y] F [¢] = 7.

Proposition 4 (Minimum Synthesis Slices). A minimum synthesis slice of I' = e = T, under
C, exists and is unique.

These slices can be calculated via a typing judgement I' - e = 7 | &, meaning & is the
minimum type-indexed synthesis slice of ' synthesising 7. The judgement rules mimic Hazel’s
typing rules, giving an algorithm to calculate minimum synthesis slices (see appendix C.5).

3.1.5. Criterion 2: Analysis Slices

A similar idea can be devised for type analysis, represented using context slices. After all, it is
the terms immediately around the sub-term where the type checking is enforced. For example,
when checking this annotated term:

(Az.()*) : Bool — Int
The inner hole term ()" (underlined) is required to be consistent with Int due to the annotation
and lambda constructor present in its context. The analysis slice will be:

(Az.()*):Bool — Int
In other words, if the context slice was type checked, then the inner hole would still be
required to analyse against Int. However, the overall synthesised type of the whole context
may differ, the above would synthesis ? — Int vs. the original Bool — Int.

Checking Context

We only want to consider the smallest context scope that enforced the type checking. For
example, the below term has 3 annotations, but only the inner one enforces the Int type on
the integer 1:

1:Int :7:Bool

I refer to this as the minimally scoped checking context. Note that checking contexts will
always synthesise a type. To give another example, an integer argument’s type is enforced by
the annotation on the function:

(Az:Int. ()*)(1)

Definition 8 (Checking Context). For term e checking against 7: T'F e < 7. A checking
context for e is an expression context C and typing assumption context F such that:

e C+#O.
o F(I')F C{e} = 7' for some 1'.
e The above derwation has a sub-derivation I' e < 7.

Definition 9 (Minimally Scoped Checking Context). For a derivation I' b e <= 7, a minimally
scoped expression checking context is a checking context of e such that no sub-context is also a
checking context.
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All minimally scoped checking contexts can be constructed syntactically via rules (ap-
pendix C.4). For a sub-term in a program, there will be a unique minimally scoped context
which matches with the program structure (appendix proposition 25). Analysis slices are slices
of minimally scoped checking contexts.

Definition 10 (Analysis Slice). For I' - e <= 7 with a minimally scoped checking context c7.
An analysis slice is a context slice ¢/ of C7 where [¢'] is also a checking context for e.

Conjecture 1 (Minimum Analysis Slices). A minimum analysis slice of I' = e < 7 in a
checking context C7, under C, exists and is unique.

This can again be calculated by a judgement reading as, e which type checks against T in
checking context C has (type-indexed) analysis slice S

IiCre<=1|p

The rules build upon rules defining minimally scoped checking contexts, and are more
complex, making use of type-indered synthesis slices, see fig. 3.1. This requires an involved
conversion of (indexed) expression slices to context slices (appendix C.3.4).

(Az : 7.\y : Int.y)(true) (Az:7.Ay: Int.y)( true)

(a) A function: synthesising Int — Int. (b) Its synthesis slice.

(Az:? Ay:Int.y)(true)(1l)
(Az:? . Ay:Int.y)(true)

(d) The analysis slice of the function’s
(c) The sub-slice relating only to the in- argument (1) when applied. Uses the
put part Int. synthesis sub-slice from (c).

Figure 3.1: Demonstration: Analysis slice application uses synthesis slices

3.1.6. Criterion 3: Contribution Slices

This criterion highlights all regions of code which contribute to typing succeeding. That is,
all sub-terms who could change their type to make the term ill-typed. For example, for the
underlined term:

(Af :Int — 7. f(1))(Az : Int. x)
Both contextual and synthetic parts (in dark yellow) contribute:

Af:Int—=7.f(1)) (Ax:Int. =)

Notice that sub-terms which do not contribute must be dynamically annotated. Therefore, this
criterion omits the dynamic code regions.

These can be calculated mimicking the Hazel typing rules. During subsumption, remove
the synthesis slice sub-part which match with dynamic parts of the analysing type. Contextual
parts are found by passing context slices directly as inputs to type analysis rules.

3.2. Cast Slicing Theory

Cast slicing propagates type slice information during evaluation, by tagging casts types with
type slices. A primary reason in formalising type-indexed slices was to make slices decompos-
able during evaluation, retaining only sub-slices relevant to the part of the type involved in the
decomposed cast. The first two criteria work together during elaboration, analysis slices in-
serted when casting on a elaborated expression who had it’s type analysed, and the synthesised
for synthesis slices. The rules are very involved, but build directly upon the Hazel calculus
elaboration semantics; the rules are found in appendix C.9.
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N /\ e .
Expressions: Closures (Mapping
let ? =7 inx variables to values)
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Figure 3.2: Mutually Recursive Hazel Terms.
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3.3. Type Slicing Implementation

Here I detail how the theories above were adapted to produce an implementation for Hazel.

3.3.1. Hazel Terms

Hazel represents its terms as a standard abstract syntax tree (AST) via mutual recursion. Every
sub-term is tagged with an identifier (ID, ID.t). Terms are grouped similarly to the calculus
(see section 2.1.2), but combining external and internal expressions, and adding patterns and
environments, see fig. 3.2 and 3.3.

let (x, y) : (Int, Bool) = (1, true) 1in x

Figure 3.3: Let binding a tuple pattern with a type annotation.

3.3.2. Type Slice Data-Type

Expression slices as ASTs

Storing expression slices directly as ASTs is both space and time inefficient, even when ac-
counting for the persistence [65, ch. 2] of trees in OCaml.

For highlighting purposes, there is no need to retain the structure (unlike the theory, we do
not need to type-check the results, instead just assuming correctness).

Unstructured Code Slices

With this in mind, I represent slices indirectly by their IDs with an unstructured list, referred
to now as a code slice. Additionally, this allows more granular control over slices, as they need
not conform with the structure of expressions, which is taken advantage of in reducing slice
sizes (section 4.8.1).

Type-Indexed Slices

Cast slicing and contribution slices required type-indezed slices. I therefore tag type construc-
tors with slices recursively, i.e.:

type typslice_typ_term =

| Unknown

| Arrow(slice_t, slice_t) // Function type

| ... // Type constructors
and typslice_term = (typslice_typ_term, code_slice)
and typslice_t = IdTagged.t(slice_term)

Figure 3.4: Initial Type Slice Data-Type

However, this did not model the structure of type slices particularly well. Analysis slices
add ids to all sub-slices, giving linear space complexity in the depth of the type.
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Incremental Slices

Therefore, slices are represented incrementally. With incremental slices for synthesis slice parts
and global slices for analysis slice parts.

A global slice is only tagged once, then lazily tagged to sub-slices if used. That is, when
deconstructing types, e.g. in function matching. We get the type in fig. 3.5:

and typslice_empty_term = [
| ~Typ(typ_term)
| “TypSlice(typslice_typ_term)

and typslice_incr_term = [
| ~Typ(typ_term)
| ~TypSlice(typslice_typ_term)
| “Slicelncr(typslice_typ_term, code_slice)

and typslice_term = [
| ~Typ(typ_term)
| “TypSlice(typslice_typ_term)
| “Slicelncr(typslice_empty_term)
| “SliceGlobal(typslice_incr_term, code_slice)

and typslice_t = IdTagged.t(typslice_term)

Figure 3.5: The type slice data-type

The invariant that a slice has at most one incremental and/or global slice is maintained by
splitting into three types (empty_term, incr_term, term). Regular un-sliced types ~Typ(...)
are maintained to provide easier interoperability with the rest of the code-base, also allowing
type slicing to be turned off.

Polymorphic Variants [39, ch. 7.4], notated [ | ... 1 are used to more conveniently
write functions on slices. This is possible due row polymorphism [66] [15, ch. 10.8] relating the
variants by a structural subtyping relation [73]. We have that:!

typslice_empty_term :> typslice_incr_term:> typslice_term

Type constructors are either co-variant or contra-variant [69, ch. 2] with respect to the
subtyping relation. For example, id tagging is covariant, so:

IdTagged.t(typslice_incr_term) :> IdTagged.t(typslice_incr_term) = typslice_t
Functions are bifunctors: contravariant in their input and covariant in their output, for example:
typslice_incr_term — typslice_incr_term :> typslice_empty_term — typslice_term

This function subtyping property significantly reduces work in defining functions on slices
(see fig. 3.6).

Utility Functions: Functions on slices often only concern the underlying type, e.g. checking
if a slice is a list type. Writing direct pattern matching code on typ_term and typslice_term
is easier. An apply function can apply these direct functions to the term inside a slice.
The bottom two branches can both be passed into apply function as they are sub-types of
typslice_term. Many other utility functions are implemented, including mapping functions,
wrapping functions, unpacking functions, matching functions.

Lz :> y meaning z a subtype of y.
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let rec apply = (f_typ, f_slc, s) =>
switch (s) {
| ~Typ(ty) => f_typ(ty)
| ~TypSlice(slc) => f_slc(slc)
| ~SliceIncr(s, _) => apply(f_typ, f_slc, s)
| “SliceGlobal(s, _) => apply(f_typ, f_slc, s)
}

Figure 3.6: Apply Utility Function

Type Slice Joins

Type joins (section 3.1.1) are extensively used in the Hazel implementation for branching state-
ments and in the theory of contribution slices.

For basic type slices, when the same type information is available from multiple branches,
highlighting only one branch is required, but both for contribution slices. See that the 1 in
fig. 3.7 is not highlighted (in green). However, we did still need some information from the left
(the 0).

G 7 then| (B, 1) Jetsel (2, @)

Figure 3.7: Type Slice Joins (note: Hazel syntax uses ? also for expression holes)

This gets complex, requiring tracking all the data relating to which branches should be
highlighted, and accumulating the inconsistent parts of failed joins for use in minimised error
slices (demonstrated in section 4.8.1). I define custom OCaml let bindings [14] to retain clarity
while automatically combining branches in successful joins and combining inconsistencies in
failed joins. For example, see fig. 3.8, where comments describe the logic abstracted by the
custom bindings; note that all join-able type combinations use this same parallel binding logic
to combine branches and inconsistencies.

3.3.3. Static Type Checking

Hazel is bidirectionally typed, where the mode (synthesis, analysis) is specified by the Mode.t
type. Type checking calculates a type information object Info.t for each term, stored efficiently
in a map from ID keys. Info.t is demonstrated in fig. 3.9 with arrows representing dependencies
(e.g. a term’s type depends on it’s mode, self, typing context, and status).

Self and Mode

Slicing logic relating to synthesis slices and analysis slices is factored into Self.t and Mode.t
respectively, cleanly segregated from the type checking code. Doing this still required full
understanding of the type checker implementation, ensuring the correct IDs are sliced.

Typing (Co-)Context

The typing context and co-contexts are modified to use type slices. This deviates from the
theoretical notion of an expression slice: the structural context in which the variable is used
is untracked when passing through the context. Therefore, it requires using unstructured code
slices. It is useful in practice, allowing slices calculated during binding to be retrieved upon
usage, see fig. 3.10.

Status and Type

The status, mode, and self are combined to determine a term’s actual type, being dynamic if
there is an error. When the expectations (mode, self) are inconsistent, the inconsistent slice
information parts are tagged to the error status; section 4.8.1 retrospectively considers what
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| (Arrow(sl, s2), Arrow(si', s2')) =>
let+ s1j = join'(sl, sl1') // If successful: binds the join to slj and
// propagates the branch used joining s1, s1'
// Else: Propagates inconsistencies in s1, si1'
and+ s2j = join'(s2, s2') // If both successful: binds the join to s2j and

// combines previously used branches joining s1, s2'
// with those used joining s2 and s2'
// Else: propagates inconsistency in s1, s2' (if any)
// alongside new inconsistencies in s2, s2' (if any)
and! branches_used = (); // If both successful: Binds combined branches
// Else: propagates inconsistencies
( // If nothing failed, Returns the successful join.
“SliceIncr((
Slice(Arrow(sl_join, s2_join)), // The successful join
choose_branch(branches_used, slice_incrl, slice_incr2),
)) // Wrap with only one slice: the left if both branches used
|> temp,
branches_used, // combined branches used

)

Figure 3.8: Joining function types

Parts Relevant to type

Info data-structure . . .
slicing aiidltlons.

Type:
The resulting type of the term
after checking status. Errors
have the dynamic type.

Typing Context:
The typing assumptions made
available by the surround context.

Relates to contribution slices Stores type slices for variables

|

|

|

|

|
Typing Co-Context: I

Lists the usages of each variable I
under whichever type each usage I
required. |

|

|

/

Used to detect unbound variables

Figure 3.9: Info.t data-structure

slice information to be extracted here. Additionally, contribution slices can extract the static
parts of synthesis slices here.

3.3.4. Integration

To support the full Hazel language, type slices needed to implement many functions, for ex-
ample: type substitution, type normalisation, weak-head normalisation, tracking sum types,
various structural matching functions etc. Additionally, almost every usage of types in the
codebase had to be refactored to use type slices (which are not so easily pattern matched
upon) while ensuring slices were correctly maintained.
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et @ 1 4 2 fim

let unused = ? 1n

I/

Figure 3.10: Type slice for variable x: includes its binding and slice.

3.3.5.

In fig. 3.11, the type slices at the cursor (in red) are highlighted. Error slices distinguish between
the synthesis and analysis parts with blue and red, see the evaluation examples section 4.9.2.

<type< <Int0pt1'on>H Some(Int) R(None)w Some(Int) )4_{ §N0n6>ﬂ

User Interface & Examples

<type< <Int0pt1'on> H

let hd = fun 1 : [Int] -> case 1
| x::_ => Some(x)

| [1 => end

in hd([])

let hd = {fun( 1 ):{ {[{Int]]) ->{(case( 1
I{ x::_ F=>( Some(x)
¢ [1 > Nonem

in hd([])

(b) The function synthesises [Int]l—
IntOption due to its [Int] annotation
and that the match branches synthesis
IntOption. Both branches provide the same
type information, only one branch (the last)
is highlighted.

(a) None synthesises IntOption due to it’s
type definition.

type IntOption = Some(Int) + None 1in
MMHW 1 )T(([ilné]) —> case 1

| x::_ => Some(x)

| [1 => None end'

fin hd({[]1))

(d) The list input is expected to be an [Int]
as it is applied to hd which is a function an-
notated with input type [Int].

typﬁ IntOpt'ioL\‘ :_E Some (Int) i ﬁNone?E
et thd A (fun, 1 ): [(Int)]ﬂ—:ﬂcase( 1

|E X:i_ A Some (x)

It [1 => Nonem

in fhd([1)

(c) The variable usage of hd synthesise
[Int] — IntOption similarly, whose slice is
retrieved from the typing context.

Figure 3.11: Type Slices

3.4. Cast Slicing Implementation

To implement cast slicing, replace casts between types by casts between type slices. Type slices
are already type-indexed and retain all type information so can be used equivalently.

3.4.1. Elaboration

Cast insertion recursively traverses the unelaborated term, inserting casts to the term’s stati-
cally determined type as stored in the Info data-structure. For example, a list literal recursively
elaborates its terms and joins their slices, casting to the join. Ensuring all the type slice infor-
mation is retained and/or reconstructed during elaboration was a meticulous and error-prone
process.

3.4.2.

Section 2.1.2 gave an intuitive overview of how casts are treated at runtime. Type-indexed
slices allows cast slices to be decomposed in exactly the same way.

However, as Hazel only checks consistency between casts between ground types, there are
two rules where new? casts are inserted (ITGround, ITExpand). The new types are created

Cast Transitions

2 As opposed to being derived from decomposition.
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T1 = T2 P ground =7

Figure 3.12: Ground Matching Functions

via a ground matching relation taking the topmost compound constructor of types, e.g. ground
functions fig. 3.12. Relevant portions of the appendix are fig. B.8, fig. B.10, fig. C.4.

As we store type slices incrementally, the part of the slice corresponding only to the outer
type constructor is the outer slice tag.

3.4.3. Unboxing

When we know a final form’s (section 2.1.2) type, we may need to extract parts of the term
according to the type during evaluation. For example, extracting the elements of a tuple. But
due to casts and holes, this is not trivial [18].

Slicing does not concern unboxing, but indeterminate evaluation (section 3.5) unveiled bugs
within which had to be fixed. I raised and fixed these, with my PR eventually being merged
into the main branch. Appendix D details this, after covering the required context on the
unboxing implementation.

3.4.4. User Interface & Examples

Type slices within casts can be selected from the evaluation result and displayed. This requires
reworking some of the dependencies of Hazel’s model-view-update architecture to make sure
the cursor has access to the code editor cell when inside the evaluation result cell.

let map = fun f -> fun 1 ->

case 1
| [0 => []
| x::xs => f(x) :: map(f)(xs)
let add = fun x -> fun y -> x H y in end
add (1) ( ) in map(fun -> x)([1,7,31)
= 1+ onel: (Iny = [, sfnte o, 3]
(a) A simple cast error blaming the plus op- (b) A hole cast to Int due to a mapped func-
erator for requiring the integer cast. tion annotated with an Int input.

M@Bmm Float E float_of_1int W
{f}(Q)}

= float_of_int( : (Int)

(c) A decomposed cast. The input of the function takes only slice
for the argument part Int of the function type Int — Float.

Figure 3.13: Cast Slicing Examples

3.5. Indeterminate Evaluation

Dynamic errors include evaluation traces, which can aid in debugging [44], yet static type errors
lack such traces. Seidel et al. [32] offer an algorithm to search for these traces for static errors
in OCaml by lazily, non-deterministically narrowing input holes to least specific values based
on their usage context.

This section creates a framework for non-deterministic evaluation of indeterminate expres-
sions by lazily performing hole substitutions using type information from dynamic casts. Unlike
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Seidel, this supports more language features (all of Hazel), any number of inputs (holes), and
exhaustive generation of these inputs. It is a general evaluation method, not limited to cast
error searches. Specifics relating to cast errors and implementing search orderings, are covered
in section 3.6.

3.5.1. Resolving Non-determinism

To model infinite non-determinism I create a monadic DSL with an explicitly tree/forest-based
representation. The forest model allows for varying low-level search traversals. The module
type of combinators is in Nondeterminism.Search; its underlying parametric type is t('a)
with 'a being the type of the solutions. Section 3.6.2 discusses the actual implementations of
this interface, giving four searching procedures.

In addition to the functions from Section 2.1.4, I add standard map and join functions, and
various other functions, e.g. ifte modelled after Mercury’s if-then-else construct [7].

Abstracting Search Order: Forest Model

Typical stream-based models of non-determinism [75] only admit the possibility of depth-
first search (DFS). Stream concatenation provides no way of remembering choice points and
backtracking before finishing a computation.

Instead, we can use a model based on forests (lists of trees) [53]. Choice, similarly to streams,
is performed by concatenating forests. Finally, to build tree structures, a wrap combinator
wraps every tree up into a single tree with a new root, see fig. 3.14. Effectively, this encodes a
notion of cost for search paths.

(1 5 2 ; 3] /\
4 5

(a) let x = return(l) <||> return(2)
<||> return(3) (b) let y = wrap(return(4) <||> return(5))

1/2\3 | /\ 1/2\3 4/ \5

4 5

(c) let z = wrap(x) <||>y (d) wrap(z)

Figure 3.14: Forests Defined Using wrap

The DSL is extended with a wrap : t('a) => t('a) combinator. As wrap is abstract, the
underlying implementation does not actually need to use a forest data structure. Therefore,
DF'S can still be efficiently implemented using regular streams. Finally, a run function produces
a lazy list of solutions with ordering specified by the search method; these can be cycled through
with some arrows in the UI.

Recursive Functions

As OCaml is strict, defining infinite choices via recursion can lead to non-termination during
definition. I define a shorthand lazy application function apply(f, x) by return(x) >>= f,
represented infix by |>-. Provided that bind lazily applies f, recursive functions can be written
directly resulting in infinite choices without OCaml’s strictness leading to infinite recursion.

3.5.2. A Non-Deterministic Evaluation Algorithm

This section demonstrates one indeterminate evaluation algorithm evaluating terms to concrete
values in fig. 3.15 with an accompanying code extract fig. 3.16.



3.5 Indeterminate Evaluation 23

» Bind input to d

47 take_step(d) 4{
Yes \

Exception: fail

Can step?
‘ Return d as result ‘ e
Yes
Yes
Step to d’
Instantiation 1 instantiate(d)

Instantiation 2

Figure 3.15: Block diagram of indeterminate evaluation to values

Instantiation is implemented by a non-deterministic function instantiate, discussed in
detail in section 3.5.3:

Instantiation.instantiate : Exp.t => S.t(Exp.t)

Evaluation steps are performed by a (deterministic) function take_step, classifying its input
as either (concrete) values, indeterminate values, or steppable expressions. The step evaluator
re-uses the Hazel stepper logic, which had existing bugs to be fixed: causing non-termination
of fixed points® and misclassifying concrete values as indeterminate values:

OneStepEvaluator.take_step : Exp.t => TryStep.t

To ensure that the search tree has finite branching factor, possibly infinite choices must be
wrapped, e.g. evaluation steps. The actual implementation additionally threads state tracking
number of instantiations and trace length throughout the algorithm.

The generalised indeterminate evaluation takes a higher-order logic function which deter-
mines the return logic (e.g. returning only results with cast errors).

3.5.3. Hole Instantiation & Substitution

This section details the semantics of hole instantiations, including Hazel-specific issues.

Choosing which Hole to Instantiate

An indeterminate term may contain multiple holes or even no holes. Which hole needs to be
instantiated in order to make progress?

When attempting to evaluate the indeterminate term some transitions rules require a sub-
term to be concrete (e.g. a function during application). We chose to instantiate the hole that
blocks the first blocked transition rule. If latter holes were instantiated, the term might still
be unevaluable due to this first hole.

This is implemented using Hazel’s evaluator abstraction (EV_MODE), which (rather ob-
scurely?) separates this logic from the transition semantics. Therefore, hole choosing logic
will automatically update to future changes in the transition semantics.

3Due to incorrect management of closures; the main branch stepper is still broken as of May 9th.
4Lacking documentations and using advanced custom let operators [14]. Understanding took considerable
time.
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module Make = (S: Search) => {

module Instantiation = Instantiation.Make(S);

open S;

open S.Infix;

let rec values = (d: DHExp.t) : S.t(DHExp.t) => {

let step = OneStepEvaluator.take_step(d);
switch (step) {
| BoxedValue => return(d)
| Indet =>

d |>- Instantiation.instantiate

>>= values;

| Step(d') => wrap(d' |>- values);
| exception (EvaluatorError.Exception(_)) => fail

Figure 3.16: Indeterminate Evaluation to Values

Synthesising Terms for Types

Suppose we know which hole to instantiate and to which type (section 3.5.4). How do we refine
these holes fairly and lazily, to the least specific value that allows evaluation to continue?
Base types must be instantiated directly to their (possibly infinite set of ) values, for example:

Booleans: return(true) <||> return(false).

Integers: A recursive definition using lazy application |>-, see fig. 3.17:

let rec ints_from = n => return(n) <||> wrap(n + 1 [>- ints_from)
let nats = ints_from(0)

let negs = ints_from(1) >>| n => -n

let ints = nats <||> wrap(negs)

/\ NN
no; / \ 0 2/ \ ; _2/ \
A AN

(a) ints_from(n) (b) ints

Figure 3.17: Enumerating Integers

Strings: A string is either empty or is a string with a first character from a finite set. We
can recursively wrap all strings, prefixed by each character. See fig. 3.18:

let chars = ... // Choice every single letter string to be considered
let rec strings = () => return("")
<||> wrap(chars >>= chr =>
() I>- strings) >>= str =>
chr ++ str))

Figure 3.18: Enumerating Strings
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case ?

let duplicate = fun x -> (x, x) 1in | © => true

let bound_hole = 7 din | 6. => true

duplicate(bound_hole) | => true
| _ => false

== (0300) end

Figure 3.19: Duplicated Holes Figure 3.20: Dynamic/Type-case Match
Statement

Other types are inductive, these can be represented indirectly by lazily instantiating only
their outermost constructors:

Lists: A list is either the empty list, [ | or a cons ?; :: 75. To retain the correct dynamic type
information, 75 must be cast back to the list type.

Sum Types: Enumerate each of the sum’s constructors with their least specific value.

Functions: Constant functions have least specific values A_. 7. The function may then be
applied to any value, and it’s result synthesised after application. This can synthesise any
return value, hence errors in the usage of the function will be detected. But, if the input has
an erroneous type but is not yet caught due to partial annotations, these will be lost. This is
rare, and could be mitigated by generating the identity function where possible.

Maintaining Correct Casts: Holes have a dynamic type at runtime. Therefore, the hole’s
context erpects a dynamic expression. Therefore, we must cast every instantiation back to the
dynamic type.

Substituting Holes

Holes can be bound to variables in the execution environment, and may also be duplicated,
before they are required to be instantiated, see fig. 3.19. Every occurrence must be substituted.

Hole substitution was described as part of the Hazel calculus section 2.1.2. But, unexpect-
edly, the main Hazel branch does not yet implement it. A full implementation of metavariables
and delayed closures is complex. Therefore, as hole closures are not required for hole instan-
tiation,® I use existing term IDs identify holes, ensuring these are maintained and propagated
correctly, so that duplicated holes retain the same ID.°

Substitutions must also be performed within closures, eagerly evaluating the results to
ensure that closures bind variables to values.

3.5.4. Determining the Types for Hole Substitutions

If we know which hole to instantiate, how do we know which type to instantiate it to? This
logic is highly specific to Hazel’s cast semantics, with many Hazel-specific issues arising.

For efficiency, my implementation both determines which hole, and its type information
during the same pass.

Directly from Casts: Most of the time, a hole is directly surrounded by a cast, whose type
information can be used to perform an instantiation.

Cast Laziness: However, this is not always the case. For efficiency reasons, Hazel treats
casts over compound data lazily, e.g. casts around tuples will only by pushed inside upon
usage of a component of the tuple. Treating casts eagerly is a significant change to the Hazel
semantics, so was opted against. Section 4.8.3 evaluates the consequence of this choice.

Pattern Matching: Does a hole even have only one possible type? Dynamic pattern match-
ing actually allows terms to be matched against non-uniform types. See fig. 3.20, having
patterns of multiple types. Hence instantiating to any of the types might allow progress.

SInstantiations do not contain variable references.
6All of elaboration and dynamics required these checks.
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We can collect each of these possible types from the elaborated casts inserted on the
branches, non-deterministically rewrapping them around the scrutinee.

Extended Match Expression Instantiation (Pattern Instantiation)

An interesting extension was partially implemented which improves code coverage and addi-
tionally detects errors within patterns. It instantiates holes in a match expression according
also to the structure of each pattern, allowing the instantiation to prioritise searching along
each branch. We instantiate the scrutinee with the least specific versions which match the
patterns on each branch, e.g. 7::7 for x: :xs. However, difficulties come when the scrutinee is
a compound term, or when least specific matches only indeterminately match earlier branches.
Further details addressing these issues can be found in appendix E.

3.6. Search Procedure

Now that a framework for indeterminate evaluation has been specified, the DSL implementa-
tions and cast error search logic can be addressed. The error search procedure can be switched
on via a toggle in the settings.

3.6.1. Detecting Relevant Cast Errors

To search for cast errors, we must first define what one is. A reasonable definition is those
terms which contain cast failures; in Hazel, these are casts between inconsistent ground types.
However, this has some issues:

Multiple Cast Failures: Terms may have multiple cast failures, some of which discovered
during static type checking and inserted via elaboration. But these failures will not stop
evaluation until necessary. Therefore, we should consider only the casts which are directly
causing a term to get stuck, this is implemented similarly to choosing which hole to instantiate
(section 3.5.3).

Cast Laziness: Only casts between ground types are checked for consistency. Due to cast
laziness (section 3.5.4), some compound terms will be cast between inconsistent types, but not
placed within a cast failure. As before, this issue is ignored due to requiring large changes to
Hazel semantics, the evaluation finds it to be a rare occurrence.

Dynamic Match Statements: When matching dynamically on values with different types,
the instantiations wrap the scrutinee in casts to each type. If any of these casts failed, they
should not count as witnesses, as they were introduced entirely by the instantiation procedure.

3.6.2. Searching Methods

I implement four different search methods, implementing the non-determinism signature spec-
ified in section 3.5.1.

Depth First Search (DFS): Modelling DFS by streams is a typical method [75]: imple-
menting choice and conjunction via appending, and wrap being identity function (no internal
tree structure needed).

Breadth First Search (BFS): Breadth first search represents forests by sequences of se-
quences [63], with the nth inner sequences representing every solution in the nth level of the
trees in the forest. Then, choice concatenates each level, and wrap conses the empty list,
pushing every solution one level down.

The other monadic operators are complex, but join : t(t('a)) => t('a) can be visu-
alised in fig. 3.21: for simplicity showing joining trees of trees, which is extended to forests by
choicing the trees in each inner forest.

This join and mapping can be defined lazily; the standard definition for bind from the paper
[53] does not work easily in OCaml due to its strictness.

Bounded Depth First Search (BDFS): BFS is fair, avoiding non-termination (for finite
branching factor), but it has exponential space complexity in the depth of the level being
explored [31]. In comparison, DFS only requires space linear in the depth explored.
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W

(a) Before Join: Singleton forest of singleton
forests (list of lists of lists of lists). Rectangles
are the inner lists of the forests.

(b) After Join: Flattened into a single for-
est (list of lists) by rotating vertical trees into
horizontal plane. Solid circles are the solu-
tions actually stored in the BFS lists.

Figure 3.21: BFS Join

Bounded DFS, performs successive depth-bounded depth first searches, retaining low space
complexity of DF'S while avoiding unfairness. Previous solutions are repeatedly explored, but
this does not increase the already exponential time complexity of the search.

Spivey [53] represent this by functions Int => ['a, Int], calculating solutions within an
integer depth bound. Solutions are tagged with their remaining depth budgets, which allows
keeping only the fringe solutions (zero budget) upon each iteration, so the same solution will
not appear twice.

I augment this into an Bound.t => (Bool, ['a, Bound.t]), implemented as a functor
allowing customised depth bound increases. The boolean is false only if no search path reaches
the depth bound, in which case the trees have been fully searched and the algorithm can be
terminated.

Interleaved Streams (IDFS): Streams, but with choice and conjunction via interleaving
also ensures fairness. This works even for trees with infinite branching factor. However, in-
terleaving has a linear space complexity, resulting in exponential space complexity as with

BFS.

3.7. Repository Overview

Branches: The submitted code contains the three most important branches of this project
(Evaluation, witnesses-type-slicing, contribution-slices). The Evaluation branch
factors out a Js_of_ocaml [5] dependency from the Hazel core library, meaning evaluation
code can be run natively and on the command line; however, the web interface is therefore
unusable on this branch.

Hazel Architecture: The Hazel architecture demonstrated in fig. 3.23 with green files/directories
added, orange files modified significantly, and blue files modified insignificantly (but still need-

ing to know how they work) or unmodified. 97 files were added/edited, not all can fit, so
anything omitted is considered insignificant to understanding this project. Figure 3.22 shows

the structure of the evaluation modules.
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Dir Description

data/* Program corpus, pre-filtering

results/* Results
I ./benchmarks.file Results of search procedure benchmarks
= ./results.file Results of effectiveness analysis
= ./failure_classification.txt  Classification of failed searches in BDF'S
- ./log.file Log from which results are derived

ParseData.ml
CastSliceUtil.ml
SlicingUtil.ml
Resourcelimits.ml
Settings.ml

Evaluation string data loaded into .ml file

Cast slice size calculation and errors classification
Type slice size calculation and errors classification
Unix alarm-based evaluation timeout

Ctx to type check & evaluate under

Util.ml Maths utilities
CastSliceUtil.ml Cast slice size calculation and errors classification
Results.ml Calculates results log
Figure 3.22: Evaluation Data, Results, and Modules
Dir Description
src/* Hazel source code
= ./haz3lcore/* Core semantics library
F ./dynamics/* Hazel dynamics
= ./indeteval/* Indeterminate Evaluation
- ./Nondeterminism.re Non-determinism DSL & im-
plementations
F ./Searching.re Collection of default search
procedures
F ./RedexHoleType.re Chooses hole to instantiate and
its possible types
[ ./CastErrorChecker.re
= ./OneStepEvaluator.re
= ./Instantiation.re Instantiation Logic & Hole
Substitution
F ./IndetEvaluation.re Generic indeterminate evalua-
tion algorithm
= ./state/* ./IndetEvaluatorState.re  IndetEval State
= ./stepper/* Hazel stepper (Bug fixes required)
= ./evaluator.re Big-step semantics: evaluator stack machine
./transition/* Transition semantics & Unboxing
= ./Casts.re Cast calculus: modified sum
type semantics
= ./PatternMatch.re Pattern matching
= ./Transition.re Small-step semantics
= ./Unboxing.re Unboxing: Various bug fixes
./lang/term/*  Hazel AST definitions & fundamental functions
= ./Grammar.re Adds type slices; replace types with slices
I ./IdTagged.re ID tagging terms
[ ./TypSlice.re Type Slices (and its utility function)
= ./Exp.re Expressions
F ./Typ.re Types: Added branch tracking logic for joins
- ./Pat.re Patterns
[ ./TPat.re Type Patterns
= ./prog/* Settings & Program results (now returning lists)
./statics/* Hazel statics
H ./Constructoriap.re  Sum constructors: Adds Constructor joining logic
= ./Ctx.re Typing assumptions context
I ./CoCtx.re Typing assumptions co-context
= ./Coverage.re Pattern matching exhaustivity & redundancy checks
F ./Self.re Expectation independent type info: Synthesis slice logic
./Mode.re Expectation based type info: Analysis slice logic
H ./Info.re Statics information: Error slices
F ./Statics.re Type Checker: Bindings slicing logic
./Elaborator.re  Elaboration: Casts are now between slices
= ./tiles/* Structure editor tiles
I ./zipper/* Structure editor zipper and parser
= ./Joins.re Slice joins utilities
- ./haz31lmenhrir/x* LR(1) Parser
F . /haz3lweb/* MVU Web Interface: see docs/ui-architecture.md
./app ./editors/* Threads cursor into ./result/* editors
f ./decoration/Deco.re Adds UI for slices and error
slices
./Settings.re  Adds indet eval and search settings
L www/* .css files: Adds slice colourings
= L/util/* ./WorkerServer.re Live evaluator: Now uses BDFS indet eval.
F ./pretty/* Formatting for Hazel code
[ ./util/* Utility modules (adds Base.Sequence)
test/*  Test cases: Updates to use type slices
F ./Test _Unboxing.re  Adds list unboxing tests (also merged into dev branch)

Key: Additions, Significant Modifications, Insignificant or No Modifications

Figure 3.23: Hazel Architecture & Additions
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Evaluation

This section evaluates how successfully and effectively the implemented features achieve the
goals stated in the introduction. Supplementary results are found in appendix F.

4.1. Swuccess

As demonstrated below, the type witness search procedure and slicing features exceeds all core
goals (section 2.3). All extensions except for the usability extensions were attempted, with
extended pattern instantiation (section 3.5.4) only partially implemented.

These were all completed with respect to most must/should/could have Hazel features,
except for: type slicing of type functions and labelled tuples,! which remain only partially
functional.

4.2. Goals

This project devised and implemented three features: type slicing, cast slicing, and a static
type error witness search procedure. Each of which had a clear intention for it’s use:

Type Slicing: Expected to give a greater static context to expressions. Explaining why an
expression was given a specific type.

Cast Slicing: Expected to provide static context to runtime type casts and propagate this
throughout evaluation. Explaining where a cast originated and why it was inserted.

Search Procedure: Finds dynamic type errors (cast errors) automatically, linked back to
source code by their execution trace and cast slice. Therefore, a static type error can be
associated automatically with a concrete dynamic type error witness to better explain.

4.3. Methodology

I evaluate the features and their various implementations (where applicable) along four axes.
Quantitative measures were evaluated over a corpus of ill-typed and dynamically-typed Hazel
programs (section 4.5):

Quantitative Analysis

Performance: Are the features performant enough for use in interactive debugging? Which
implementations perform best?

The time and space usage of the search procedure implementations were micro-benchmarked
for each ill-typed program in the corpus. Up to 100 runs were taken per program with estimated

time, major and minor heap allocations were estimated using an ordinary linear regression
(OLS) via the bechamel library [10].

Effectiveness: Do the features effectively solve the problems? Are the results easily inter-
pretable by a user?

The coverage, what proportion of programs admit a witness, for each search procedure
implementation was measured. The search procedure does not always terminate, a 30s time
limit was chosen. The coverage was expected to be reasonable, chosen at 75%.

Additionally, the size of witnesses, evaluation traces, type slices, and cast slices were mea-
sured. The intention being that a smaller size implies that there is less information for a user
to parse, and hence easier to interpret.?

Qualitative Analysis

Critical: What classes of programs are missed by the search procedure? What are the impli-
cations of the quantitative results? What improvements were, or could be made in response to
these?

ILabelled tuples were only merged late in the development cycle.
2Not necessarily always true, but a reasonable assumption.
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This section provides critical arguments on usefulness or effectiveness, which are evidenced
by quantitative data. Differing implementations and subsequent improvements are compared.
Additionally, further unimplemented improvements are proposed.

Holistic: Do the features work well together to provide a helpful debugging experience? Is the
user interface intuitive?

Various program examples are given, demonstrating how all three features can be used
together to debug a type error.

4.4. Hypotheses

I made several hypotheses and investigated each. The evidence and implications being discussed
in the following sections.

Search method space requirements: The space requirements for DF'S and Bounded DFS
are expected to be lower than that of BFS and interleaved DFS.

Type Slices are larger than Cast Slices in Errors: Casts are deconstructed during
elaboration and evaluation, so cast slices are expected to be smaller than the original type
slices, and therefore more directly explain why errors occur.

The Small Scope Hypothesis: This hypothesis [40] states that a high proportion of errors
can be found by generating only small inputs. Evidence that this hypothesis holds has been
provided for Java data-structures [56] and answer-set programs [42]. Does it also hold for
finding dynamic type errors from small hole instantiations?

Smaller instantiations correlate with smaller traces: As functional programs are often
written recursively, destructuring compound data types on each step. If this and the small
scope hypothesis hold, then most errors could be found with small execution traces.

4.5. Program Corpus Collection

A corpus of small and mostly ill-typed programs were produced, containing both dynamic
(unannotated) programs and annotated programs (containing statically caught errors). We
have made this corpus available on GitHub [11].

4.5.1. Methodology

There are no extensive existing corpora of Hazel programs, nor ill-typed Hazel programs. There-
fore, we opted to transpile parts of an existing OCaml corpus collected by Seidel and Jhala
[27], which is freely available under a Creative Commons CCO licence.

I am grateful for my supervisor who created a best-effort OCaml to Hazel transpiler [12].
This translates the OCaml examples into both a dynamic example, and a (possibly partially)
statically typed version according to what type the OCaml type checker expects expression to
be.

This corpus contains both OCaml unification and constructor errors. When translated to
Hazel, these may manifest as differing errors. The only errors that the search procedure is
expected to detect are those which contain inconsistent expectations errors. Hence, the search
procedure is ran on the corpus of annotated programs filtering those without this class of errors.
Additionally, the search procedure requires the erroneous functions to have holes applied to
start the search, these are inserted automatically by the evaluation code after type checking
the programs.

4.5.2. Statistics

The program corpus contains 698 small programs, 294 were annotations, of which 203 were
applicable to performing the search procedure on.
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Ratios Implementations
vs. DFS BDFS IDFS BFS
Time 8.3 52 230

Major Heap | 9.0 3.2 270
Minor Heap | 9.7 83 390

Figure 4.1: Benchmarks: Performance ratios to DF'S over common programs

4.6. Performance Analysis
4.6.1. Slicing

The type and cast slicing mechanisms do not increase the time complexity of the type checker
nor evaluator. Hence, they are still as performant as the original, capable of interactive use for
medium sized programs.

4.6.2. Search Procedure

Only the annotated ill-typed corpus containing inconsistency errors are used in evaluating the
search procedure. After all, any well-typed program cannot have a dynamic type error.

As the search procedure may be non-terminating, these results are found given a 30s time
limit. Micro-benchmarking the programs which do not time-out, the time and space used
searching for each witness can be estimated.

The performance ratios between each implementation as compared to DFS on only the
programs which both terminate are given in fig. 4.1. As expected, BFS and IDFS use more
memory in total than BDFS and DFS, while DFS is the fastest.

4.7. Effectiveness Analysis
4.7.1. Slicing

Type slice sizes (amount of highlighting) were calculated over the entire corpus. While cast
slice sizes were calculated over the resulting elaborated expressions.

Figure 4.2 shows that type are generally small. In particular, the proportion of the context?
highlighted is very low, generally less than 5% for dynamic code and 10% for annotated code.
Therefore, they concisely explain the expressions’ type on average.

Additionally, for errors, there are multiple inconsistent slices involved. Section 4.8.1 de-
scribes how these slices can be summarised to only report the inconsistent parts. We find that
these minimised error slices are significantly (3x) smaller than directly combining the slices.

As hypothesised, combined slices within cast errors are smaller than combined static error
slices on average (2x, fig. F.3). Therefore, casts can more precisely point to which part of an
expressions type caused them.

4.7.2. Search Procedure

Witness Coverage

The search procedure terminates either with a witness or proving no witness exists. A majority
of programs terminated when using BDFS, DFS and IDFS, with BDFS meeting the 75% target
directly (fig. 4.3). IDFS and BFS perform relatively poorly likely due to excessive memory usage
(fig. F.2).

However, not all static errors have a dynamic witness, e.g. errors within dead code. 1
manually classified each failed program for BDFS to check if a witness does exist, but was not
found, or no witness exists. This gives only 2% of cases where BDFS failed to actually find
an ezisting witness; DFS and IDFS also meet the goal of failing in less than 25% of cases.
Section 4.8.3 goes into further detail on categorising the programs which time out, and how
this could be avoided.

3Calculated by close approximation by the program size. As each program in the corpus is just one definition.
Calculating the context itself is non-trivial.
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Averages Subdivisions
Combined Error Slices | Minimised Error Slices
unit | ok | expects branches all | expects branches  all
Type Slice size | 8.2 13 22 15 5.7 3.2 )
Std. dev. 11 10 24 15 4.31 4.1 4.4
Proportion % | 5 8 14 9 3 2 3
Std. dev. 7 8 14 10 3 3 3
(Unannotated)
Type Slice size | 7.5 21 133* 22.6 8.2 2.0* 8.2
Std. dev. 13 22 42%* 25.2 12.6 0.0* 12.6
Proportion % | 4 14 0.48%* 15 6 1* 5
Std. dev. 9 18 0.07* 18 9 0* 12
(Annotated)

* only 2 annotated programs had inconsistent branches

Figure 4.2: Effectiveness: Type Slices

Witness Missed
2.0%

Dead Code
23.0%

Witness Missed
12.0%

Dead Code

23.0% With Witness

53.0% )
Proves No Witness
12.0%

With Witness
63.0%

Proves No Witness
12.0%

(a) DFS

(c) Interleaved DFS

(b) Bounded DFS

With Witness
15.0%

Witness Missed
21.0%

With Witness

47.0%
Dead Code
. X 23.0%
Dead Code Witness Missed

62.0%

Proves No Witness
%

(d) BFS

Figure 4.3: Search Procedure Coverage

Witness & Trace Size

As predicted by the small-scope hypothesis, most programs admitted small witnesses (avg.
sizes of 1-2, i.e. mostly base cases).

However, there was no linear correlation (Pearson correlation coefficient = 0) between wit-
ness sizes and trace sizes, even when normalised by the original deterministic evaluation trace
lengths. This is likely because most errors are in the base cases, so few large witnesses are even
found, with the noise from trace lengths to different programs’ base cases dominating.

4.8.

This section discusses the implications of the previous results and delves deeper into the rea-
soning behind them. As a response to this analysis, many improvements were devised.

Critical Analysis
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gjet x + Int = 7 din WIWJH 7 >-||-,(

x > o Jehen x fetse( @ G X > 0 Jthen| x jelse @

(a) Ad-hoc Slice: Let expression omitted (b Ordinary Slice |
Figure 4.4: An Ad-hoc Slice vs. Ordinary Slice

4.8.1. Slicing

Type slicing theory (section 3.1) requires highlighted code to form valid expressions or contexts,
though some highlighted parts, like unused or dynamic bindings, do not affect types and can
be omitted. This motivated the use of unstructured (ad-hoc) slices (section 3.3.2).

In fig. 4.4, a bound integer x is only used in one branch. Since the other branch can already
determine the type of the conditional, the x and let are excluded from the slice. Though the
whole program is selected (see the red cursor) the let expression is omitted. A contribution
slice would include everything, making it even more verbose.

Error Slices

Type errors arise from inconsistencies between a term’s analysis and synthesis slices, or across

synthesising branches. Understanding the error requires comparing all the slices involved.
Some type parts may agree, hence another form of type joining was introduced to isolate only

the inconsistent parts. For instance, in fig. 4.5, differences like (Int, Int) vs (Int, String)

highlight only the mismatched sub-slices.

let x : (Int, gAf) = 7 1in

Gf 7 then (1, @) elsel (3, (TEOUR) let y : (Int, Gtring) = ¥ in

(a) Partially Inconsistent Branches (b) Partially Inconsistent Expectations

Figure 4.5: Error Slices

Compound type inconsistencies necessarily differ at the outermost constructor (e.g., List
vs Int), being the primary cause of the error. Deeper inconsistencies are not those causing
the type error. Therefore, we could extract only the slice on the outermost constructor. These
minimised slices (fig. 4.6) are significantly (avg. 3x) smaller than full combined slices (fig. 4.2).
This ratio may grow with program complexity, the corpus had few partially inconsistent cases.

] 7 then (] else

(a) Minimised Error Slice: Inner Int slice within (b) Ordinary Error Slice
list is omitted

Figure 4.6: Minimised Error Slices

4.8.2. Static-Dynamic Error Correspondence

A static type error will place a term inside a cast error during elaboration, which can be
associated with a dynamic error whose cast error is dependent on (decomposed from) this
original failed cast. This works well for inconsistent expectations static type errors.

However, for inconsistent branches, no direct cast failure occurs until a branch result is used
in a static context. Still, since elaboration adds casts to each branch, these can be tracked with
the error. But, we cannot distinguish if the error was caused by the branch or the use.
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4.8.3. Categorising Programs Lacking Type Error Witnesses

47 programs which timed out under the BDFS search procedure were manually inspected and
classified as either:

e Witness Exists: BDF'S failed to find an existing witness.
e Dead Code: The error lies in unreachable code:

— Pattern Cast Failure: Error within a pattern matching branch, making the branch
unreachable. These are detectable by the extended pattern directed instantiation
algorithm (section 3.5.4).%

— Unbound Constructor: Attemping to match an unbound constructor. Also de-
tectable with the extended instantiation.

— Wildcards: Erroneous code bound to the inaccessible wildcard pattern:
let = ... in ....

— Non-Trivial: Less easily detectable. One example exhibited this, infinitely recursing
for all inputs.

e Hazel Bugs: Unboxing bugs present in the main branch (excluded from the statistics).
Figure 4.7 shows this distribution and three (paraphrased) examples are given in the appendix

fig. F.5. The full classification is in failure-classification.txt.

Dead Code
]
1

/

_____________

Unbound
Constructor

Trivial Delad Code
|

/

____________
-

o Non-Trivial Dead Code
Fixed By Pattern

Instantiation
————— Wildcards
Pattern Cast -——-Hazel Bugs
Failure

‘——— Witness Exists

Figure 4.7: Distribution of Failed Program Classes

Non-Termination, Unfairness, and Search Order

DFS is fast but prone to non-termination, giving it lesser coverage than BDFS (fig. 4.3). If
evaluation infinitely loops, so will DF'S without exploring other instantiations. It is also unfair,
it may never try some instantiations [54]. This affected 10% of cases.

To address this, BDFS, BFS, and IDFS were implemented, with BDFS performing the due
to prioritising evaluation over instantiation. BFS and IDFS would do significantly better if
they tried longer trace length more frequently, on average reaching only half the trace length
(full data: fig. F.4). Wrapping evaluation in the evaluation algorithm would help this, but
choosing how frequently to wrap evaluation is a delicate balancing act.

4The inconsistent patterns would be attempted, and subsequently reduced to expression cast failures.
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Dead Code & Nested Errors

Errors within dead code cannot have a witness as they are not dynamically reachable. A
significant portion (39/47) of failed programs for BDFS had trivial dead code which could
easily be detected and returned explicitly as proving no witness exists.

Additionally, code can become dead due to errors. 12 (32%) of the dead code classified
had a nested error within a branch that is unreachable due to a pattern error on the branch
pattern. Even if witnesses are found for these branch errors, the nested errors remain hidden.

Cast Laziness

Hazel treats casts lazily, deferring cast transitions on compound data until their elements
are used (e.g., tuple elements). Hazel does not detect cast errors between these non-ground
compound types (e.g., [Int] vs [String]) until elements are used. Therefore if such elements
are unused in code, the error cannot be witnessed. These are uncommon, none appearing in
the search corpus.

Addressing this would require eager cast semantics, as has been previously explored for
dynamic and gradual type systems [67, 46] (often referred to as coercions). Additionally, they
would catch dynamic errors earlier, for example, fig. 4.8 shows a cast inconsistency undetected
(by lazy casts) at runtime until the tuple element is accessed.

let x = (1, ) 1in

let f“= (fun x : (Int, Int) -> x)
in f(x)

=N (@ Y (1, ): (Int, Int)

Figure 4.8: Inconsistent Lazy Casts: No Cast Failure

Combinatorial Explosion

When multiple holes are involved in searching, the search space increases exponentially. This
combinatorial explosion especially impacts IDFS and BFS, who prioritise instantiation over
evaluation. This leads to high memory use and hinders evaluation from progressing far enough
to detect errors, even when valid witnesses have been instantiated.

Further, some errors only arise on very specific inputs, e.g. (23, 31) and (31, 23) in
fig. 4.9. Directing instantiation to maximise code coverage earlier could find such errors at-
tempting fewer instantiations.

4.8.4. Improving Code Coverage

The search procedure struggles when compound witnesses require specific, interdependent
parts, being much less likely to instantiate. These errors are also harder for programmers
to detect or understand; understanding the error might require recognizing input interdepen-
dencies.

Intelligently directing hole instantiations to better cover the code would help. A pattern-
directed instantiation as described in section 3.5.4 would discover 2 of the 3 missed witnesses
by BDFS.

Still, BDFS retains a very high coverage over the search procedure when excluding dead
code (97%).

let f = fun (x, y) ->
if x x y == 713 then 1 + !"str else 0
in

Figure 4.9: Witness requiring very specific instantiations
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4.9. Holistic Evaluation

This section considers a number of examples of ill-typed Hazel programs, holistically and qual-
itatively evaluating how a user might use the three features and the existing bidirectional type
error localisation [16] to debug the errors.

4.9.1. Interaction with Existing Hazel Type Error Localisation

Hazel has three error types addressed by this project: inconsistent expectations (analytic and
synthetic types are inconsistent), inconsistent branches (branches or list element types are
inconsistent), and inexhaustive matches.

Section 4.8.2 showed how witnesses can be associated to inconsistency errors. While in-
determinate evaluation can give examples for pattern inexhaustivity, standard pattern matrix
methods [50] are more efficient. The matrices would also be useful for directing pattern instan-
tiation.

When errors arise from the programmer misunderstanding the program types, error locali-
sation can be inaccurate (due to assuming different types to the programmer’s expectations).
The context inspector (fig. 4.10) clarifies what assumptions the system makes while slicing and
witnesses can explain why.

let x : Int = {'str) in x
EXP @) String literal  : STtring inconsistent with expected type Int
Figure 4.10: Selected Static Error described by Hazel Context Inspector
When the programmer and system agree on the types, bidirectional typing generally localises
the error(s) well [36, 16]. However, there is not always enough static information to even
recognise errors, and many type annotations may need to be inserted to detect the error. The

search procedure tests such code for such type errors automatically, and can be a quicker way
to detect these errors than adding annotations.

4.9.2. Examples

let sum : ? -> ? = fun n ->
if n < © then false else\sum(nfl)}ﬂ 1

in sum(?)
let sum : 7 -> 7 = fun n —>
if n < @ then false else sum(n-1) + n = Talsé: qng + 1
in sum(?)
(b) Automated witness found with cast slice
(a) Error blaming + operator

Figure 4.11: Dynamic Code: An error is not statically found. Cast slicing still works even
without the type annotations, blaming addition forcing ints.
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let map : (Int —> Int) -> [Int] -> [Int] = Let map J:{ (Int B{@nt) F{ [1nt] B {fInd]) =

fun f -> fun 1 -> case 1 > fun 1 -> case 1
| [1=>11 | [1=>1]

| xiixs => f(.x'))@ map(f) (xs) | x::xs => @E}@ map (f) (xs)

end nd
in map(?)(7) in map(?)(?)

EXP Application | : Int inconsistent with expacted type [Int] EXP Application | : Int inconsistent with expected type [Int]

(a) Error (b) With Error Slice

Figure 4.12: Inconsistent Expectations: f(x) synthesises type Int but analyses against
[Int]. The minimised error slice shows (in pink) why Int is synthesised (due to input f
being annotated Int -> Int and applied) and (in blue) why a list is expected.

let f = fun x => x + 1 1in <l__eti fun X => x 1
let g = fun x -> x ++ "one" 1in fun d x "one" m

={1f ? then f e'Lse g -.1-' 7 then

(a) Error (b) With Error Slice

Figure 4.13: Inconsistent Branches: A more complex inconsistency involving non-local bind-
ings. Minimal error slices highlight only the bindings, and conflicting addition and string
concatenation operators.

let concat : [[Int]] -> [Int] = let concat )( {4 nﬁ)_(((lng)
fun 1 -> case 1 ‘l
| [1=>11
| x::xs => (x‘: rconcat(xs) Hconcat(xs)
end nd
in concat(?) in concat(?)

exP (ZJP Variable reference | : [Tnt] inconsistent with expected type Int EXP Variable reference | : [Int] inconsistent with expected type Int

(a) The user thinks that list cons : : concatenates (b) Error slice highlights the offending ::, but

lists. with considerable noise distracting from this.
Also, if the user still expects :: to perform con-
catenation, this is useless.

[1: Int:: []: Int:: case []

| [1 => [1 let concat H‘[[Int]] H([@Ing]), =

| x:: xs => x: Int:: concat(xs) fun 1 -> case 1

il | 11 => 01
= [1: Int:: [1: Int:: [] | x::xs => {_ﬂconcat(xs)
end
= [1: Int:: [[]: Int] in concat(?)

[[1: Int, []1: Int]
= [0 Int, [1: Int]

(c) The user cycles through increasingly larger

witnesses (until [[], [1]) to spot the consing (d) Alternatively, the cast slice to Int concisely
pattern. End of trace concretely shows :: act- retrieves the relevant part of the original type
ing as cons. slice.

Figure 4.14: Holistic Example involving all three features
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let fold : (Int -> Int -> Int) -> Int -> [Int] -> Int
= fun f -> fun init -> fun 1 ->
case 1
| [0 => init
| x::xs => f(x)(fold(f)(init)(xs))
end
in
let add = fun (x : Int, v : Int) -> x + y in
let sum = fold(add) (0)

in sum(?»

(a) Fold takes curried functions, but uncurried
add is used.

let fold : (Int -> Int -> Int) -> Int -> [Int] -> Int
= fun f -> fun init -> fun 1 ->
case 1
| [1 => init
| x::xs => f(x)(fold(f)(init)(xs))
end

in

[et add F(fun (x_: Iné] y : Int) -> x + y)?ﬂ
let sum = fold(add) (@) din

sum(?)

= (caddl0: (€, ) -

) (0)

mﬂ ((m -> Int):(Int) -> Int -> [Int] -> Int
= fun f -> fun init -> fun 1 ->
case 1
| [1 => 1init
| x::xs => f(x)(fold(f)(init)(xs))
end

q
%(ﬂiﬂqfun (x : Inﬂy : Int) -> xﬂyﬂ
let sum =§foldﬂ%dﬂﬂ(@) in

sum(?)

(b) Error slice is verbose, and merges multiple
inconsistencies: (Int, Int) ¢ Int and Int
Int — Int. The second inconsistency is min-
imised to Int ¢ 7 — 7.

(foLd))T( (Int —> Int }5{ Int) -> Int -> [Int] -> Int
= f

un f -> fun init -> fun 1 ->

case 1
| [1 => init
| x::ixs => f(x)(fold(f)(init)(xs))
end
i
let add = fun (x : Int, y : Int) -> x + y 1in
llet sum = d(@) in
sum( ?7)
= (<add>(@: (0, M: o P e

(d) Same witness has a second cast error: out-

(c) Witness ([0]) found automatically: expects put of add(0) is expected to be a function. Cast
input 0 into add to be a tuple. Cast slice considers slice considers only the minimised Int 4 7 — 7

only the (Int, Int) ¢ Int inconsistency.

inconsistency.

Figure 4.15: A more subtle holistic example involving currying. Requires slice decomposition

internally.
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Conclusions

All core goals and extensions set out in section 2.3 were achieved except for the low pri-
ority extensions, of which extended pattern instantiation was partially implemented. All
must /should /could have features of Hazel were supported except for only partial support for
labelled tuples and type substitution.

Type slicing proved more expressive than initially planned, applying to all expressions, not
just errors. Therefore, it can also be used to learn and build understanding on how Hazel’s
type system works, not just for debugging errors.

An indeterminate evaluation framework (section 3.5) was built, greatly generalising the
original search procedure [32] to allow multiple search orderings, and different classes of results,
e.g. concrete values, or derived results like expression sizes.

5.1. Further Directions
5.1.1. UI Improvements, User Studies

During the holistic evaluation, various usability and UI improvements were considered and
added as low-priority extensions (appendix G). Once implemented, a user study could assess
the real world effectiveness of type slicing and cast slicing in improving understanding of the
type system, and locating errors.

5.1.2. Cast Slicing

Cast slicing propagates type slice information throughout evaluation. But, it provide no slicing
on execution properties of the program. Extended slicing methods could, for example, provide
a minimal program which evaluates to the same cast around the same value. This could build
on traditional dynamic slicing methods [74, 43], and find use also in debugging semantic errors.

5.1.3. Property Testing

Indeterminate evaluation provides a way to generate inputs to function. So, it could be used for
property testing, generating inputs to functions and testing expressions. A framework similar
to SmallCheck [49] or QuickCheck [60] could be implemented. Being part of the evaluator,
intermediate expressions and execution properties could also be tested.

5.1.4. Non-determinism, Connections to Logic Programming

Non-deterministic evaluation could be harnessed to implement non-deterministic constructs
(e.g. a choice operator) for Hazel. Treating holes as unknowns and instantiating lazily is
reminiscent of free logic variables in functional logic programming languages [45], e.g. in Curry
[9]. Adding unification [72] would allow full logic programming in Hazel. A needed-narrowing
evaluation strategy [59] would be a significantly more efficient than the current lazy non-
deterministic instantiation.

5.1.5. Symbolic Execution

Use of symbolic Execution [25] would improve the proportion of witnesses found by the search
procedure by improving code coverage (section 4.8.4). Indeterminate evaluation can be con-
sidered a form of simple symbolic execution, only considering constraints enforced by casts.
Section 3.5.4 considered directing instantiation using patterns within match statements.

5.1.6. Let Polymorphism & Global Inference

Types in globally inferred languages are often more subtle, as there are fewer annotations
asserting the programmers intent. This project would be particularly useful in these situations.

In Hazel: Global inference is difficult or impossible to combine with complex type systems.
Global inference for high rank polymorphism, like Hazel’'s System-F style polymorphism, is
undecidable [64]. However, a form of let-polymorphism via principal type schemes [77] is
possible. Intersecting this with gradual typing has been explored by Garcia and Cimini [33]
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and Miyazaki et al. [23], the latter of which would integrate most smoothly with Hazel and
indeterminate evaluation.

Constraint Slicing: The search procedure and cast slicing are relatively easily extended
to a let-polymorphic Hazel in the style of Miyazaki et al. However, type slicing now has
to consider non-local constraints alongside code which sourced them, differing significantly
from bidirectional type slicing. Somewhat similar ideas, but limited only to errors, have been
explored in constraint-based type error slicing by Haack and Wells [55].

5.2. Lessons Learnt

This project required extensive theory and mathematical thought, requiring in extensive reading
of the surrounding research. I have, therefore, learnt how to effectively find relevant research
and quickly extract and understand their key contributions.

Further, it worked on the rapidly moving open-source codebase Hazel. As such, I have
learnt how a large software project works, learning how to use effectively use version control and
continuous integration tools. Additionally, communicating with other developers has offered
insights into how collaborative development of software works.

The result was an extensive multi-faceted project, requiring great effort. On reflection,
it might have been better to focus on either type slicing or the search procedure, allowing
time to turn one of these into a truly usable debugging aid (implementing the Ul extensions).
In retrospect, it would have been more time-efficient and rigorous to fully automate slicing
regression tests, creating a framework that abstracts away the randomised term IDs within
slices.



41

Bibliography

1]

2]
3]

Alcotest: OCaml unit testing framework. URL: https:/ /github.com /mirage /alcotest
(visited on 05/10/2025).

Hazel Project Website. URL: https://hazel.org/ (visited on 02/28/2025).
Hazel Source Code. URL: https://github.com /hazelgrove /hazel (visited on 02/28/2025).

Jane Street: Base. URL: https://ocaml.org/p/base/v0.15.0/doc/Base/index.html (visited
on 05/10,/2025).

Javascript of OCaml package. URL: https:/ /ocaml.org /p/js of ocaml/5.0.1 /doc/
Js of ocaml/Regexp/index.html (visited on 05/10/2025).

Oleg Kiselyov. Delimited Control in OCaml. URL: https://okmij.org/ftp/continuations/
implementations.html.

Mercury Reference Manual: Clauses. URL: https://mercurylang.org/information /doc-late
st /mercury _ref /Clauses.html#Overview-of-Mercury-semantics (visited on 04/12/2025).

OCaml Effects Examples. URL: https://github.com /ocaml-multicore /effects-examples/
tree/master (visited on 03/26/2025).

The Curry Programming Language. URL: https://curry-lang.org/ (visited on 04/16/2025).

Bechamel Micro Benchmarking Library. 2025. URL: https://github.com /mirage/becham
el.

Patrick Ferris. A Corpus of annotated and unannotated ill-typed Hazel Programs. May
2025. URL: https://github.com/patricoferris/hazel-corpus.

Patrick Ferris. OCaml to Hazel transpiler. May 2025. URL: https://github.com/patricof
erris/hazel of ocaml.

TIOBE Software. TIOBE Programming Community Index. 2025. URL: https://www.
tiobe.com/tiobe-index/ (visited on 02/27/2025).

The OCaml Development Team. The OCaml Manual: release 5.3 — Binding Operators.
2025. URL: https://ocaml.org/manual /5.3 /bindingops.html (visited on 05/12/2025).

Benjamin C Pierce. Advanced topics in types and programming languages. MIT press,
2024.

Eric Zhao et al. “Total Type Error Localization and Recovery with Holes”. In: Proceedings
of the ACM on Programming Languages 8. POPL (Jan. 2024), pp. 2041-2068. 1SSN: 2475-
1421. DOI: 10.1145/3632910. URL: http://dx.doi.org/10.1145/3632910.

David S. Warren. “Introduction to Prolog”. In: Prolog: The Next 50 Years. Ed. by David
S. Warren et al. Cham: Springer Nature Switzerland, 2023, pp. 3—19. ISBN: 978-3-031-
35254-6.

DOI: 10.1007/978-3-031-35254-6_1. URL: https://doi.org/10.1007/978-3-031-35254-6_1.

Yongwei Yuan et al. “Live Pattern Matching with Typed Holes”. In: Proc. ACM Program.
Lang. 7.00PSLA1 (Apr. 2023).
DOI: 10.1145/3586048. URL: https://doi.org/10.1145/3586048.

Abdulaziz Alaboudi and Thomas D. LaToza. An Ezploratory Study of Debugging Episodes.
2021. arXiv: 2105.02162 [cs.SE]. URL: https://arxiv.org/abs/2105.02162.

Hannah Potter and Cyrus Omar. “Hazel tutor: Guiding novices through type-driven
development strategies”. In: Human Aspects of Types and Reasoning Assistants (HATRA)
(2020).

Zack Coker et al. “A Qualitative Study on Framework Debugging”. In: 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 2019, pp. 568—
579. DOI: 10.1109/ICSME.2019.00091.


https://github.com/mirage/alcotest
https://hazel.org/
https://github.com/hazelgrove/hazel
https://ocaml.org/p/base/v0.15.0/doc/Base/index.html
https://ocaml.org/p/js_of_ocaml/5.0.1/doc/Js_of_ocaml/Regexp/index.html
https://ocaml.org/p/js_of_ocaml/5.0.1/doc/Js_of_ocaml/Regexp/index.html
https://okmij.org/ftp/continuations/implementations.html
https://okmij.org/ftp/continuations/implementations.html
https://mercurylang.org/information/doc-latest/mercury_ref/Clauses.html#Overview-of-Mercury-semantics
https://mercurylang.org/information/doc-latest/mercury_ref/Clauses.html#Overview-of-Mercury-semantics
https://github.com/ocaml-multicore/effects-examples/tree/master
https://github.com/ocaml-multicore/effects-examples/tree/master
https://curry-lang.org/
https://github.com/mirage/bechamel
https://github.com/mirage/bechamel
https://github.com/patricoferris/hazel-corpus
https://github.com/patricoferris/hazel_of_ocaml
https://github.com/patricoferris/hazel_of_ocaml
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://ocaml.org/manual/5.3/bindingops.html
https://doi.org/10.1145/3632910
http://dx.doi.org/10.1145/3632910
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1007/978-3-031-35254-6_1
https://doi.org/10.1145/3586048
https://doi.org/10.1145/3586048
https://arxiv.org/abs/2105.02162
https://arxiv.org/abs/2105.02162
https://doi.org/10.1109/ICSME.2019.00091

BIBLIOGRAPHY 42

22]

23]

[24]

[27]

28]

[30]

[31]

32]

[34]

[35]

Oleg Kiselyov. “Effects Without Monads: Non-determinism — Back to the Meta Lan-
guage”. In: Electronic Proceedings in Theoretical Computer Science 294 (May 2019),
pp- 15-40. 18SN: 2075-2180.

DOI: 10.4204/eptcs.294.2. URL: http://dx.doi.org/10.4204/EPTCS.294.2.

Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. “Dynamic type inference for
gradual Hindley—Milner typing”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019).
DOI: 10.1145/3290331. URL: https://doi.org/10.1145/3290331.

Cyrus Omar et al. “Live functional programming with typed holes”. In: Proceedings of
the ACM on Programming Languages 3.POPL (Jan. 2019), pp. 1-32. 1SSN: 2475-1421.
DOI: 10.1145/3290327. URL: http://dx.doi.org/10.1145/3290327.

Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In: ACM Comput.
Surv. 51.3 (May 2018). 1SSN: 0360-0300.
DOI: 10.1145/3182657. URL: https://doi.org/10.1145/3182657.

Moritz Beller et al. “On the dichotomy of debugging behavior among programmers”.
In: Proceedings of the 40th International Conference on Software Engineering. ICSE "18.
Gothenburg, Sweden: Association for Computing Machinery, 2018, pp. 572-583. ISBN:
9781450356381.

DOI: 10.1145/3180155.3180175. URL: https://doi.org/10.1145/3180155.3180175.

Eric L Seidel and Ranjit Jhala. A Collection of Novice Interactions with the OCaml Top-
Level System. June 2017.
DOLI: 10.5281/zenodo.806814. URL: https://doi.org/10.5281/zenodo.806814.

Baijun Wu and Sheng Chen. “How type errors were fixed and what students did?” In:
Proc. ACM Program. Lang. 1.00PSLA (Oct. 2017).
DOI: 10.1145/3133929. URL: https://doi.org/10.1145/3133929.

Matteo Cimini and Jeremy G. Siek. “The gradualizer: a methodology and algorithm for
generating gradual type systems”. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’16. ACM, Jan.
2016, pp. 443-455.

DOI: 10.1145/2837614.2837632. URL: http://dx.doi.org/10.1145/2837614.2837632.
Robert Harper. Practical Foundations for Programming Languages: Second Edition. Cam-
bridge University Press, Mar. 2016. 1SBN: 9781316576892.

DOI: 10.1017/c¢bo9781316576892. URL: http://dx.doi.org/10.1017/CB0O9781316576892.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. pearson,
2016.

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. “Dynamic witnesses for static type
errors (or, ill-typed programs usually go wrong)”. In: Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional Programming. ICFP’16. ACM, Sept. 2016,
pp. 228-242.

DOI: 10.1145/2951913.2951915. URL: http://dx.doi.org/10.1145/2951913.2951915.

Ronald Garcia and Matteo Cimini. “Principal Type Schemes for Gradual Programs”.
In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL '15. Mumbai, India: Association for Computing Ma-
chinery, 2015, pp. 303-315. 1SBN: 9781450333009. DOI: 10.1145/2676726.2676992. URL:
https://doi.org/10.1145/2676726.2676992.

Jeremy G. Siek et al. “Refined Criteria for Gradual Typing”. In: Summit on Advances
in Programming Languages. 2015. URL: https:/ /api.semanticscholar.org / CorpuslD:
15383644.

Agile Business Consortium: Chapter 10 MoSCoW Prioritization. Jan. 2014. URL: https:
/ /www.agilebusiness.org /dsdm-project-framework /moscow- prioririsation.html (visited

on 02/28/2025).


https://doi.org/10.4204/eptcs.294.2
http://dx.doi.org/10.4204/EPTCS.294.2
https://doi.org/10.1145/3290331
https://doi.org/10.1145/3290331
https://doi.org/10.1145/3290327
http://dx.doi.org/10.1145/3290327
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.5281/zenodo.806814
https://doi.org/10.5281/zenodo.806814
https://doi.org/10.1145/3133929
https://doi.org/10.1145/3133929
https://doi.org/10.1145/2837614.2837632
http://dx.doi.org/10.1145/2837614.2837632
https://doi.org/10.1017/cbo9781316576892
http://dx.doi.org/10.1017/CBO9781316576892
https://doi.org/10.1145/2951913.2951915
http://dx.doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://api.semanticscholar.org/CorpusID:15383644
https://api.semanticscholar.org/CorpusID:15383644
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html

BIBLIOGRAPHY 43

[36]

[37]

[44]

[45]

[46]

[47]

Jana Dunfield and Neelakantan R. Krishnaswami. “Complete and easy bidirectional type-
checking for higher-rank polymorphism”. In: Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming. ICFP’13. ACM, Sept. 2013.
DOI: 10.1145/2500365.2500582. URL: http://dx.doi.org/10.1145/2500365.2500582.

Ohad Kammar, Sam Lindley, and Nicolas Oury. “Handlers in action”. In: Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Programming. ICFP
’13. Boston, Massachusetts, USA: Association for Computing Machinery, 2013, pp. 145—
158. 1SBN: 9781450323260.

DOI: 10.1145/2500365.2500590. URL: https://doi.org/10.1145/2500365.2500590.

Lucas Layman et al. “Debugging Revisited: Toward Understanding the Debugging Needs
of Contemporary Software Developers”. In: 2013 ACM / IEEFE International Symposium
on Empirical Software Engineering and Measurement. 2013, pp. 383-392.

DOLI: 10.1109/ESEM.2013.43.

Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Functional
programming for the masses. O’Reilly Media, Inc., 2013.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2012. 1sBN: 0262017156.

Oleg Kiselyov. “Typed Tagless Final Interpreters”. In: Generic and Indexed Program-
ming: International Spring School, SSGIP 2010, Ozxford, UK, March 22-26, 2010, Re-
vised Lectures. Ed. by Jeremy Gibbons. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 130-174. ISBN 978-3-642-32202-0. DOI: 10.1007/978-3-642-32202-0_3. URL:
https://doi.org/10.1007/978-3-642-32202-0-3

Johannes Oetsch et al. “On the small-scope hypothesis for testing answer-set programs”.
In: Proceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning. KR’12. Rome, Italy: AAAI Press, 2012, pp. 43-53. I1SBN:
9781577355601.

Roly Perera et al. “Functional programs that explain their work”. In: ACM SIGPLAN
Notices 47.9 (Sept. 2012), pp. 365-376. 1SSN: 1558-1160. DOI: 10.1145/2398856.2364579
URL: http://dx.doi.org/10.1145/2398856.2364579.

Bas Cornelissen, Andy Zaidman, and Arie van Deursen. “A Controlled Experiment for
Program Comprehension through Trace Visualization”. In: IEEE Transactions on Soft-
ware Engineering 37.3 (2011), pp. 341-355. DOI: 10.1109/TSE.2010.47.

Sergio Antoy and Michael Hanus. “Functional logic programming”. In: Commun. ACM
53.4 (Apr. 2010), pp. 74-85. 1sSN: 0001-0782. DOIL: 10.1145/1721654.1721675. URL:
https://doi.org/10.1145/1721654.1721675.

David Herman, Aaron Tomb, and Cormac Flanagan. “Space-efficient gradual typing”.
en. In: High.-order Symb. Comput. 23.2 (June 2010), pp. 167-189.

Philip Wadler and Robert Bruce Findler. “Well-Typed Programs Can’t Be Blamed”. In:
Programming Languages and Systems. Springer Berlin Heidelberg, 2009, pp. 1-16. 1SBN:
9783642005909.

DOI: 10.1007/978-3-642-00590-9_1. URL: http://dx.doi.org/10.1007/978-3-642-00590-
9.1.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. “Contextual modal type
theory”. In: ACM Transactions on Computational Logic 9.3 (June 2008), pp. 1-49. 1SSN:
1557-945X.

DOI: 10.1145/1352582.1352591. URL: http://dx.doi.org/10.1145/1352582.1352591.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. “Smallcheck and lazy small-
check: automatic exhaustive testing for small values”. In: Proceedings of the First ACM
SIGPLAN Symposium on Haskell. Haskell ’08. Victoria, BC, Canada: Association for

Computing Machinery, 2008, pp. 37-48. ISBN: 9781605580647.
DOI: 10.1145/1411286.1411292. URL: https://doi.org/10.1145/1411286.1411292.


https://doi.org/10.1145/2500365.2500582
http://dx.doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/2398856.2364579
http://dx.doi.org/10.1145/2398856.2364579
https://doi.org/10.1109/TSE.2010.47
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/1352582.1352591
http://dx.doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/1411286.1411292

BIBLIOGRAPHY 44

[50]
[51]
[52]
[53]

[54]

[59]

[60]

[62]

[63]

[64]

[65]

LUC MARANGET. “Warnings for pattern matching”. In: Journal of Functional Pro-
gramming 17.3 (2007), pp. 387-421. DOI: 10.1017/S0956796807006223.

Linda Dailey Paulson. “Developers shift to dynamic programming languages”. In: Com-
puter 40.2 (2007), pp. 12-15. DOIL: 10.1109/MC.2007.53.

Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”. In: Scheme
and Functional Programming Workshop. 2006, pp. 81-92.

Michael Spivey. “Algebras for Combinatorial Search”. In: July 2006.

DOI: 10.14236/ewic/MSFP2006.11.

Oleg Kiselyov et al. “Backtracking, interleaving, and terminating monad transformers:
(functional pearl)”. In: Proceedings of the Tenth ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP ’05. Tallinn, Estonia: Association for Computing
Machinery, 2005, pp. 192-203. 1SBN: 1595930647. DOIL: 10.1145/1086365.1086390. URL:
https://doi.org/10.1145/1086365.1086390.

Christian Haack and J.B. Wells. “Type error slicing in implicitly typed higher-order
languages”. In: Science of Computer Programming 50.1-3 (Mar. 2004), pp. 189-224.
ISSN: 0167-6423.

DOI: 10.1016/j.scico.2004.01.004. URL: http://dx.doi.org/10.1016 /j.scico.2004.01.004.

Alexandr Andoni et al. “Evaluating the ”Small Scope Hypothesis””. In: (Oct. 2002).

Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002. 1SBN:
0262162091.

F. Tip and T. B. Dinesh. “A slicing-based approach for locating type errors”. In: ACM
Transactions on Software Engineering and Methodology 10.1 (Jan. 2001), pp. 5-55. ISSN:
1557-7392.

DOI: 10.1145/366378.366379. URL: http://dx.doi.org/10.1145/366378.366379.

Sergio Antoy, Rachid Echahed, and Michael Hanus. “A needed narrowing strategy”. In:
J. ACM 47.4 (July 2000), pp. 776-822. 1SSN: 0004-5411. DOI: 10.1145/347476.347484.
URL: https://doi.org/10.1145/347476.347484.

Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random testing of
Haskell programs”. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming. ICFP ’00. New York, NY, USA: Association for Computing
Machinery, 2000, pp. 268-279. 1sBN: 1581132026. DOI: 10.1145/351240.351266. URL:
https://doi.org/10.1145/351240.351266.

Robert Harper and Christopher Stone. “A Type-Theoretic Interpretation of Standard
ML”. In: Proof, Language, and Interaction. The MIT Press, May 2000, pp. 341-388.
ISBN: 9780262281676. DOI: 10.7551 /mitpress/5641.003.0019. URL: http://dx.doi.org/
10.7551 /mitpress/5641.003.0019.

Benjamin C. Pierce and David N. Turner. “Local type inference”. In: ACM Transactions
on Programming Languages and Systems 22.1 (Jan. 2000), pp. 1-44. 1sSN: 1558-4593.
DOI: 10.1145/345099.345100. URL: http://dx.doi.org/10.1145/345099.345100.

Michael Spivey. “Combinators for breadth-first search”. In: J. Funct. Program. 10.4 (July
2000), pp. 397-408. 1SSN: 0956-7968.
DOI: 10.1017/S0956796800003749. URL: https://doi.org/10.1017/S0956796800003749.

J.B. Wells. “Typability and type checking in System F are equivalent and undecidable”.
In: Annals of Pure and Applied Logic 98.1 (1999), pp. 111-156. 1sSN: 0168-0072.

DOLI: https://doi.org/10.1016/S0168-0072(98)00047-5. URL: https://www.sciencedirect.
com/science/article/pii/S0168007298000475.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, Apr.
1998. 1SBN: 9780511530104.
DOI: 10.1017/cbo9780511530104. URL: http://dx.doi.org/10.1017/CBO9780511530104.


https://doi.org/10.1017/S0956796807006223
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.14236/ewic/MSFP2006.11
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1016/j.scico.2004.01.004
http://dx.doi.org/10.1016/j.scico.2004.01.004
https://doi.org/10.1145/366378.366379
http://dx.doi.org/10.1145/366378.366379
https://doi.org/10.1145/347476.347484
https://doi.org/10.1145/347476.347484
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.7551/mitpress/5641.003.0019
http://dx.doi.org/10.7551/mitpress/5641.003.0019
http://dx.doi.org/10.7551/mitpress/5641.003.0019
https://doi.org/10.1145/345099.345100
http://dx.doi.org/10.1145/345099.345100
https://doi.org/10.1017/S0956796800003749
https://doi.org/10.1017/S0956796800003749
https://doi.org/https://doi.org/10.1016/S0168-0072(98)00047-5
https://www.sciencedirect.com/science/article/pii/S0168007298000475
https://www.sciencedirect.com/science/article/pii/S0168007298000475
https://doi.org/10.1017/cbo9780511530104
http://dx.doi.org/10.1017/CBO9780511530104

BIBLIOGRAPHY 45

[66]

[67]

Benedict R Gaster and Mark P Jones. A polymorphic type system for extensible records
and variants. Tech. rep. Technical Report NOTTCS-TR-96-3, Department of Computer
Science, University of Nottingham, 1996.

Fritz Henglein. “Dynamic typing: syntax and proof theory”. In: Sci. Comput. Program.
22.3 (June 1994), pp. 197-230. 18sN: 0167-6423. DOI: 10.1016/0167-6423(94)00004-2.
URL: https://doi.org/10.1016,/0167-6423(94)00004-2.

Robert Harper and John C. Mitchell. “On the type structure of standard ML”. In: ACM
Transactions on Programming Languages and Systems 15.2 (Apr. 1993), pp. 211-252.
ISSN: 1558-4593.

DOI: 10.1145/169701.169696. URL: http://dx.doi.org/10.1145/169701.169696.

Benjamin C Pierce. Basic category theory for computer scientists. MIT press, 1991.

Olivier Danvy and Andrzej Filinski. “Abstracting control”. In: Proceedings of the 1990
ACM Conference on LISP and Functional Programming. LEP ’90. Nice, France: Associ-
ation for Computing Machinery, 1990, pp. 151-160. 1SBN: 089791368X.

DOI: 10.1145/91556.91622. URL: https://doi.org/10.1145/91556.91622.

M. Abadi et al. “Dynamic typing in a statically-typed language”. In: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’89. Austin, Texas, USA: Association for Computing Machinery, 1989, pp. 213—
227. 18BN: 0897912942.

DOLI: 10.1145/75277.75296. URL: https://doi.org/10.1145/75277.75296.

Kevin Knight. “Unification: A multidisciplinary survey”. In: ACM Computing Surveys
(CSUR) 21.1 (1989), pp. 93-124.

Luca Cardelli. “Structural subtyping and the notion of power type”. In: Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
1988, pp. 70-79.

Bogdan Korel and Janusz Laski. “Dynamic program slicing”. In: Information Processing
Letters 29.3 (Oct. 1988), pp. 155-163. 1sSN: 0020-0190. DOI: 10.1016/0020-0190(88)
90054-3. URL: http://dx.doi.org/10.1016/0020-0190(88)90054-3.

Philip Wadler. “How to replace failure by a list of successes a method for exception
handling, backtracking, and pattern matching in lazy functional languages”. In: Func-
tional Programming Languages and Computer Architecture. Ed. by Jean-Pierre Jouan-
naud. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 113-128. 1SBN: 978-3-
540-39677-2.

Maurice Bruynooghe. “Adding redundancy to obtain more reliable and more readable
prolog programs”. In: CW Reports (1982), pp. 5-5.

Luis Damas and Robin Milner. “Principal type-schemes for functional programs”. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’82. Albuquerque, New Mexico: Association for Computing Machinery,
1982, pp. 207-212. 1SBN: 0897910656.

DOI: 10.1145/582153.582176. URL: https://doi.org/10.1145/582153.582176.

Mark Weiser. “Program slicing”. In: Proceedings of the 5th International Conference on
Software Engineering. ICSE ’81. San Diego, California, USA: IEEE Press, 1981, pp. 439
449. 1SBN: 0897911466.

David HD Warren. “Applied logic: its use and implementation as a programming tool”.
PhD thesis. The University of Edinburgh, 1978.

Robert W. Floyd. “Nondeterministic Algorithms”. In: J. ACM 14.4 (Oct. 1967), pp. 636—
644. 1ssN: 0004-5411.
DOI: 10.1 '145/32'142[).32'14'22. URL: https://doi‘ol‘g/'l 0.1 ]45/32142().321422.

Garrett Birkhoff. Lattice theory. Vol. 25. American Mathematical Soc., 1940.


https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1145/169701.169696
http://dx.doi.org/10.1145/169701.169696
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/75277.75296
https://doi.org/10.1145/75277.75296
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1016/0020-0190(88)90054-3
http://dx.doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422

BIBLIOGRAPHY 46

[82] Holbrook Mann MacNeille. “Partially ordered sets”. In: Transactions of the American
Mathematical Society 42.3 (1937), pp. 416-460.



Appendix A 47

Overview of Semantics and Type Systems

Syntax

Expression-based language syntax are the core foundation behind formal reasoning of program-
ming language semantics and type systems. Typically languages are split into expressions e,
constants ¢, variables x, and types 7. Hazel additionally defines patterns p.

A typical lambda calculus can recursively define it’s grammar in the following form:

b ::= A set of base types
Tu=T—=>T|b
¢ ::= A set of constants of base types
x = A set of variable names
ex=clz|lx:T.e]|e(e)

Judgements & Inference Rules
A judgement, J, is an assertion about ezpressions in a language [30]. For example:

e Exp e — e is an expression
e n :int —n has type int

e ¢ || v — e evaluates to value v

While an inference rule is a collection of judgements J, Ji, ..., J,:
J oy oy
J
Representing the rule that if the premises, Jp, ..., J, are true then the conclusion, J, is true.

When the collection of premises is empty, it is an aziom stating that the judgement is always
true. Truth of a judgement J can be assessed by constructing a derivation, a tree of rules
where it’s leaves are axioms. It is then possible to use rules to define a judgement by taking
the largest judgement that is closed under a collection of rules. This gives the result that a
judgement J is true if and only if it has a derivation.

Properties on expressions can be proved using rule induction, if a property is preserved by
every rule for a judgement, and true for it’s axioms, then the property holds whenever the
judgement is derivable.

A hypothetical judgement is a judgement written as:

T e |

is true if J is derivable when additionally assuming each J; are axioms. Often written I' - J and
read J holds under context I'. Hypothetical judgements can be similarly defined inductively
via rules.

Defining a Type System

A typical type system can be expressed by defining the following hypothetical judgement form
' e : 7 read as the expression e has type T under typing context I' and referred as a typing
judgement. Here, e : 7 means that expression e has type 7. The typing assumptions, I, is a
partial function' from variables to types for variables, notated 1 : 71,. .., 2, : 7o. For example
the SLTC? [57, ch. 9] has a typing rule for lambda expression and application as follows:

'Fe:m—n
ex:mbe:n 'Fey:m
F'FXe.e:mp =7 ['Fei(er):m

LA function, which may be undefined for some inputs, notated f(x) = L.
2Simply typed lambda calculus.
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Meaning, Az.e has type m — 7o if e has type 7 under the extended context additionally
assuming that = has type 71. And, e;(es) has type 73 if e; is a function of type 71 — 75 and its
argument e, has type 7.

Small Step Operational Semantics

A relation e; — e5 can be defined via judgement rules to determine the evaluation semantics of
the language. It’s multi-step (transitive closure) analogue is notated e; —* €2, meaning e; = e
or there exists a sequence of steps e; — €] — ... — ea.

€1 — €2 (D) —* €3
e—* e e1 =" es

Evaluation order can be controlled by considering classifying terms into normal forms (val-
ues). A call by value language would consider normal forms v as either constants or functions:

vi=c|Ar:Te

Hazel evaluations around holes by treating them as normal forms (final forms). A call by value
semantics for the lambda calculus would include, where [v/z]e is capture avoiding substitution
of value v for variable x in expression e:

ey — €
Az : 7. e)v — [v/z]e e1(ez2) — e1(eh)
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Hazel Formal Semantics

This is the complete formal semantics for the Hazel core calculus. 1t is gradually typed so
consists of both an external language and internal language.

B.1. Syntax
Ti=blT—=>T] 7
0 [ (eb* [ e: 7

ex=clz|Ar:Te| A r.e|ele)
|

|
du=clz|Xx:7d|dd) | ()a| (d)g | d{r=7T) | d{T="7%T)

u
g
Figure B.1: Syntax: types 7, external expressions e, internal expressions d. With x ranging

over variables, u over hole names, o over z — d internal language substitutions/environments,
b over base types and ¢ over constants.

B.2. Static Type System
B.2.1. External Language

e synthesises type 7 under context I

“ . z:17€el - e:mke=mn
t
T TrRe=1b “Trr=r " I'FXx:m.e=mn =
F|_€1:>7'1 TP To—T
SA [Fecmn SEHol
PP ole
I'Fe(e) =7 T'E () =7
SNEHole [Fe=7 SAsc [Feer
Lk (e)* = 7 'te:7=r1
e analyses against type 7 under context I
T T — T2 I'Fe=r
o Ne:mke<mn . T~ T
Y TR Me<=T P The < 7

Figure B.2: Bidirectional typing judgements for external expressions

Ti ~ To| T is consistent with 7,

Ty ~T] To o~ T

TCDynl B TCDyn2

£~ T T~

TCRi—————  TCFun
T~T TI — Ty ~ T| = Ty

Figure B.3: Type consistency
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\7’ > T — 7'2\ 7 has arrow type 7, — 7

MAD MAFu
M SN I NI

Figure B.4: Type Matching

B.2.2. Elaboration

\F Fe=T1~dH A\ e syntheses type 7 and elaborates to d

ESConst ESVar TiTE I
F'Fec=b~cH0 FFx=7~2-0

z:mnkFe=mn~d4dA
' Xe:me=17 >~ Ax:m.ddA
I'Fe, =7 TP To—>T
FFeg<=n—o7wdiirf 44 The<=mn~dyimh 1A,
F"@l(eg) :>’/"V‘-><d1<7'{:>7'2—>7'>)(d2<7'£=>7'2>)_|A1UA2
ESEHole

ESFun

ESApp

TE(*= 7~ (e w0

'Fe=7~dHA
['F (e)* = ?W(]d[)?d(r)%A,u:: (I

'Fe<=71~d: 7 4A
Fke:7=71~dr'=1)4A

ESNEHole

ESAsc

I'ce<«<7~~d:74A| e analyses against type 7 and elaborates to d of consistent type 7’

TW»_,T1 — Ty
z:mbFe<smn~d:4A

' Xze<=rt~w A :nd:m —1md4A
e# ()" e # (e)*

l'Fe=717~~»d4dA 71~7
lFes=71~d:7H4A

D) <=7~ gy : 7 Fw [l

F'Fe=71~d4A
I (e)* <= 7~ (d)igry : 7 A w7l

EAFun

EASubsume

EAEHole

EANEHole

Figure B.5: Elaboration judgements
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Wd(zy 2 Ty Xy Th) = [T T, T T

A;TFo: T iff dom(o) = dom(I”) and for every z : 7 € IV then: A;T Fo(x): 7

Figure B.7: Identity substitution and substitution typing

B.2.3. Internal Language

A;T'Ed: 7| dis assigned type 7

TAC AV z:T7el . AT, x:mbEd:n
o A:TFe:b * ATRxT " ATE N md:m — 7
AT Hd i —T w T[] e A
" AT Edy: 1 Aol Ao TV
T TAEHole
bp AT Edi(dy) 1 AT E()2 7
AT HEd: T
A uzTle A AlEo:T” N ATHd:m 11~7
TANEHole TACast
A;TF(d)y T AT Hd{im=m)

A;THd:m 7 ground 75 ground T # 7
AT Hdim=75T) T

TACastError
Figure B.6: Type assignment judgement for internal expressions

T is a ground type

GBase————  GDynFun
b ground

? — 7 ground

Figure B.8: Ground types
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B.3. Dynamics
B.3.1. Final Forms

d is final

d boxedval d indet
FBoxedVal d final FIndex d final
d is a value
Vonst ¢ val Vi Az : T.d val
d boxedval| d is a boxed value
— d val — T — Ty #7173 — 74 d boxedval
d boxedval d(m — =73 — T4) boxedval
d boxedval 71 ground
BVDynCast
d{(T="7) boxedval
d is indeterminate
dy # dy(1) — To=T3 — T4)
d final dy indet dy final
IEHole———————— INEHole————————— IAp -
()% indet (d)* indet d1(dy) indet
d indet 7 ground d#d{(r'=7) dindet 7 ground
ICastGD - ICastDG ;
d(t=>7) indet d(?=-7) indet
d final 7 ground
T — To #7173 =74 dindet Ty ground T # Ty
ICastFun ICastError
d(m — =73 — T4) indet d(m1="7+T) indet
Figure B.9: Final forms
B.3.2. Instructions
d takes and instruction transition to d’
ITFun ITCastld
O\t - 7.dy)(d2) — [da/]dy N drer) — d

TN — Ty # T — T

ITAppCast
di (T = To=1] = T5)(d) — (d1(d2{T{=T71))){(T2=T5)
71 7& T2
7 ground 71 ground 75 ground
ITCast ITCastError
d(t=7=T1) — d d(M=7=T9) — d(M1=7%Ty)
T ’ground 7—/ T ’ground 7—/
ITGround ITExpand

d{(t=7) — d{t=7'=7) d{(?=T1) — d(?=7'=7)

Figure B.10: Instruction transitions (non-deterministic version)
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B.3.3. Contextual Dynamics

T Pgound 7' | T matches ground type 7’

7'1—>7'27£?—)?
T1 — To »ground?_>?

Figure B.11: Ground type matching

Context syntax:
E:=o|E()|dE)|(E)Y]| E(t=T) | E(t=7%T)

d = E[d]| dis the context F filled with d’ in place of o

ECOuter—————  ECAppl di = Eld)] ECApp2 d» = Eldo]
d= O[d] d1(d2) = E(d2)[dl] dl(d2> = dl(E) [d’2]
d= E|d] d = E|d]
T e =B T A=) = Bn=m)[d]
d = E[d]
ECCastError

d steps to d’

Figure B.12: Contextual dynamics of the internal language (non-determinism version)
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B.3.4.

Hole Substitution

[

o

d/ulld = d"| d"is d with each hole u substituted with d in the respective hole’s environment

[d/u]c =c

[d/u]z =z

[d/u] Xz : 7.d’ = \v: 7.[d/u]d

[d/u]di(d2) = ([d/u]dy)([d/u]d2)

[d/u] ()5 = [[d/u]o]d

[d/u] () = (D ajugo if u#v
[d/ul(d)5 = [[d/u]old

[d/ul(d)y = ([d/u]d)}ayuo if u#v
[d/u]d (r=7") = ([d/u]d)(T=7")

[d/u]d (r=2-7") = ([d/u]d)(T=7=-7")

[d/u]o = o'| o' is o with each hole u in o substituted with d in the respective hole’s envi-

ronment.

[d/u]- =
[4/ulo, &'/ = [d/ulo, ([4/uld) /2

Figure B.13: Hole substitution



Appendix C 55
Slicing Theory

C.1. Expression Typing Slices

C.1.1. Term Slices

Syntax

Extending core Hazel syntax with patterns pt = _ | « where _ is the wildcard pattern (binding
the argument to nothing).

Definition 11 (Term Slice Syntax). Pattern expression slices p:
pu=Lu|-|z

Type slices v:
vi=0y, | ?2|bjv—wv

Ezpression slices ¢:
¢u=Uep [cla[Ap:v. [ Ap. o |<() [0 [ ()" [¢:v

Note: labels for gaps are generally omitted, being determined from their position.

Precision Relation
Definition 12 (Term Precision). Pattern slices p:

Type slices v:
viCvu vhE vy

Cyyp C o vCov v] = vh v — vy

Ezxpression slices ¢:

PCp JvVCuv JLCg

Ueap E € cLg Ap V. dEApiu. g
PCp JCg gCa  ¢Cg JC¢ JLCuw
AP T Ap. ¢ 61(s%) E <i(s2) Jd:vCg:u

Proposition 5 (Precision is a partial order). Term precision forms a partial order on term
slices. That is:

abe obg abe olg
NIEEN 1= %2 SEERS
Proof. Trivial rule induction on the structure of C. O

Lattice Structure
Definition 13 (Term Slice Joins). For all t:

HUt=t=tul] tUt=1

(v = ve) U (v = vh) = (v Uvy) = (vg U vj)
(Ap v QU 10 <) = ApUp) : (vU). (cUd)  (Ap. QU <) = ApUp'). (<L)
a(@)Uc(s) = (@ Ug)(eUs)  (s:o)u(:v) = (cud): (vud)
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Definition 14 (Term Slice Meets). For all t, t':

Ont=0=tnQ4 tret=t¢

(V1 = v9) M (V] = vy) = (v MV]) = (Ve TTV))
(Ap zv. ) (A" 0. <) = Apnp) : (vM). (cT1<) (Ap. )M &) = AlpT1p'). (cM<)
(@) Msi(o) =(@Na)(enNeg)  (s:v)M(d )= (sNd): (vNnv')
Otherwise:

tnt =0

Proposition 6 (Term Slice Bounded Lattice). For any term t, the set of slices ¢; and sy of t
forms a bounded lattice:

o The join, ¢ U g exists , being an upper bound for ¢, G:
abale L ale

And, any other slice ¢ C t which is also an upper bound of <1, is more or equally precise
than the join:
aUaebg

o The meet, ¢; Mg exists, being a lower bound for ¢, -

SRR =S SRR =S

And, any other slice ¢ T t which is also a lower bound of <1, is less or equally precise
than the meet:
cLalUg

o And the join and meet operations satisfy the absorption laws for any slice s:
SERIGRERSY S| UG Me)=¢

And idempotent laws:
UGG =g =qllq

o The lattice is bounded. That is, [1C ¢ C t.

Proof. Obvious but tedious. Requires proving the definitions above correctly make joins as
least upper bounds and meets as greatest lower bounds. Existence follows from there always
being a lower bound [] and every slice being of a complete term t. [

C.1.2. Typing Assumption Slices

Typing Assumptions as Partial Functions

Definition 15 (Typing Assumptions). A typing assumption function I' is a partial function
from the set of variables X to types T . A partial function is either defined I'(x) = T or undefined
[(x) = L. It’s domain dom(I") is largest the set of variables S C X for which T' is defined:
Ve e S. I'(x) # L.

Typing Assumption Slices
Definition 16 (Typing Assumption Slices). A typing assumption slice 7y is a partial function
from the set of variables X to type slices v.
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Precision

Definition 17 (Typing Assumption Slice Precision). For typing assumption slices vy, 7,. Where
dom(f) is the set of variables for which a partial function f is defined:

7 C 2 <= dom(y;) C dom(ys) and Vo € dom(v1). 71(x) E va(z)

Proposition 7 (Precision is a partial order). Typing assumption precision forms a partial order
on typing assumption slices.

Proof. Follows from C and C being partial orders, and that logical conjunction distributes over
forall quantifiers. O

Lattice Structure

Definition 18 (Typing Assumption Slice Joins and Meets). For typing slices 1,72, and any
variable x:

e If ni(z) = L then (v1 Une)(z) = 12(x) and (11 M72)(x)
e Ifyo(x) = L then (v1 Une)(z) = n(x) and (11 M 72)(x)

o Otherwise, (71 U2)(z) = v1(z) Uya(x).

1.
1

Proposition 8 (Typing Assumption Slices form Bounded Lattices). For any typing assump-
tions I', the set of slices v of I' form a bounded lattice with bottom element of the empty partial
function O and top element T".

Proof. v1(x) # L A ~(z) # L case follows from proposition 6 and that logical conjunction
distributes over forall quantifiers. The other cases follow from subsets of any set X forming
bounded lattices. O
C.1.3. Expression Typing Slices

Definition 19 (Expression Typing Slices). An expression typing slice p is a pair <7 of expres-
sion slice ¢ and typing assumption slice 7.

Precision

Definition 20 (Expression Typing Slice Precision). For expression typing slices ¢{*, ¢3°:

G'Ce)f <= gL gandy Ty

Proposition 9 (Precision is a Partial Order). Expression typing precision forms a partial order
on expression typing slices.

Proof. Componentwise definitions preserve universal algebras. m

Lattice Structure
Definition 21 (Expression Typing Slice Joins and Meets). For expression typing slices ¢]*,
V2.
G
GPUGE = (a Ug)m™
GG = (s M) ™

Proposition 10 (Expression Typing Slices for Bounded Lattices). For any expression e and
typing assumption T, the set of expression typing slices <7 of e forms a bounded lattice with

bottom element [1° and top element e .

Proof. Componentwise definitions preserve universal algebras. O
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Type Checking

Definition 22 (Interpreting Term Slices as Terms). By replacing gaps in terms with holes, the
dynamic type, or wildcard patterns, slices can be interpreted as terms. For gaps:

u s fresh
[[Dtyp]] =7 [[Dpat]] = - [[Dexp]] = ()"
Patterns:
- [] =«
Types:
[vil]=71  [v]=m

[rfl=r [vr = vo] =11 = 7

Expressions:

[p] = pt [v] = [s] =e [p] = pt [<] =e

[e] =e [Mo:v.c]=Mpt:T. e [Ap. <] = Apt. e
[a1] = e [s2] = ea [s]=e [v]=r71
[<1(c2)] = ei(e2) [c:v]=e:T

Definition 23 (Interpreting Typing Assumption slices by Typing Assumptions). Translated
by extension, for typing assumption slice ~y:

V(z) =[v(@)]  ify(z) # L

D)=L ify@)=1

Definition 24 (Expression Typing Slice Type Checking). For expression typing slice <7 and
typeT. yEs=Tiff [7]Fs] = 7 andy s <=1 iff [V] F [s] <= 7.

C.2. Context Typing Slices
C.2.1. Contexts

Definition 25 (Contexts Syntax). Pattern contexts — mapping patterns to patterns:
P = Opar
Type contexts — mapping types to types:
T =0y | T =1 7—=>T
Ezxpression contexts — mapping patterns, types, or expression to expressions:
Cu=Oep | NPT e|Apt:T.e|Apt:T.C|AP.e| Apt. C|C(e) |e(C)|e:T |C:T

Definition 26 (Context Substitution).

Opat{Pt} =pt Otyp{T} =T Oezp{e} =e€
TJ{n}=mn T{r} =1
(T = n){nt=1—mn (m—=I )N n}t=n—m
P{pt} = pt’ P{pt} = pt’
AP 1. e){pt} =Apt' : T. e (AP. e){pt} = Apt'. e

!'Note that € is also used for generic term contexts sometimes.
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T{r} =1 T{r} =1
(Apt:T.e){r}=Apt:7". e (e:T)W{r}=e:7
C{e} =¢ C{e} =¢ C{lei} =¢€}
(Apt:7. C){r}=AMpt: 7. ¢ (Apt. C){r} = Apt. € (C(e2)){e1} = €(e2)
C{es} =€) C{le} =¢

(e1(C)){ea} = ea(es) (Cor)e} =€ 7
The input and output classes of contexts C will be notated C : X — Y for Pat (patterns), Typ
(types), Exp (expressions).

Definition 27 (Context Composition). Defined analogously as context substitution, but sub-
stituting contexts syntactically, provided the input and output classes match. If C1 : X — Y and
Cy: Y — Zthen Co{C1} = Cy00Cy : X — Z. Equivalence of contexts can be defined syntactically
and coincides exactly with an extensional definition.

Composition could alternatively be defined pointwise, and we get the same result here, but
it is later important we keep this syntactic to allow decomposition around the marks inside
contexts.

Proposition 11 (Context composition is associative). For all C; : X — ¥, Cy : Y — Z, and
Cs : Z— W then:
(Gg o Gg) ©) 01 = Gg 9 (GQ o 01)

Proof. Trivial. O]
C.2.2. Context Slices
Syntax extended analogously to term slices. Use ¢ to represent context slices.

Precision

Definition 28 (Context Precision). If ¢ : X — Y and ¢’ : X — Y are context slices, then ¢’ C ¢
if and only if, for all terms t of class X, that ’{t} C c{t}.

Proposition 12 (Precision is a Partial Order). Context precision forms a partial order on
context slices.

Proof. Follows from C on term slices being a partial order, and that logical conjunction dis-
tributes over forall quantifiers. n

Proposition 13 (Context Filling Preserves Precision). For context slice ¢ : X — Y and term
slice s of class X. Then if we have slices ¢’ C ¢, ¢' C ¢ then also ¢'{s'} C c{s}.

Proof. '{c} C ¢{s} follows directly from definition of context precision. c¢{¢'} C c¢{c} is due
substituted contexts retaining their inputs as sub-terms. O]

Lattice Structure
Definition 29 (Context Slice Joins & Meets). For context slices ¢y : X — Y and ¢ : X — Y and

any term t of class X:
(c1 Ueg){t} = er{t} Uca{t}
((’1 (N CQ){t} = Cl{t} M (‘Q{t}

Definition 30 (Purely Structural Contexts). Least specific slices of some context, containing
only gaps [ and the mark O. The purely structural context of C is the unique one that is a
slice of C

Py := Opat

Ts =0y | T =0 0—=T
Cy = Oy | AP L O [AD:T. O [AD: 0. C|AP. O] M. C| e | 0e)|0:T |¢: 0
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Proposition 14 (Context Slices form Bounded Lattices). For any context C, the set of slices
c of C form a bounded lattice with bottom element of the purely structural context of C and top
element C.

Proof. Follows smoothly as usual. Bottom element is different for each bounded lattice in this
case. [

C.2.3. Typing Assumption Contexts & Context Slices

Definition 31 (Typing Assumption Contexts & Slices). A typing assumption context F is a
function from typing assumption to typing assumptions. A typing assumption context slice f is
a function from typing assumption slices to typing assumption slices.

Precision
Definition 32 (Typing Assumption Context Slice Precision). If f' and f are typing assumption
context slices, then f' C f if and only if, for all typing context slices vy, that f'(y) C f(7).

Proposition 15 (Precision is a Partial Order). Typing assumption context precision forms a
partial order on typing assumption context slices.

Proof. Pointwise definitions preserve this structure as before. m

Proposition 16 (Function Application Preserves Precision). For typing assumption slice y and
typing assumption context slice f. Then if we have slices v T ~y, f' T f then also f'(7') C f(7).

Lattice Structure

Definition 33 (Typing Assumption Context Slice Joins & Meets). For typing assumption
context slices f1 and fo and any typing assumption slice ~y:

(LU fo)(v) = f1(y) U f2()

(LT f2)(v) = f1(v) T /()

Proposition 17 (Typing Assumption Context Slices form Bounded Lattices). For any typing
assumption context F, the set of slices f of F form a bounded lattice with bottom element being
the constant function to the empty typing assumption function and top element F.

Proof. Pointwise definitions preserve this structure as before. ]

C.2.4. Context Typing Slices

Definition 34 (Expression Context Typing Slice). An expression context typing slice p is a
pair context slice with sub-contexts recursively tagged by typing assumption context slice f. If f
1s omitted, then assume it is the identity.

Precision

Definition 35 (Expression Context Typing Slice Precision). For expression context typing
; fi S

slices ¢1', ¢5°:

SEP = ciCTeyand LT fo

Proposition 18 (Precision is a Partial Order). Typing assumption context precision forms a
partial order on typing assumption context slices.

Proof. Componentwise definitions preserve universal algebras. O
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Composition
Definition 36 (Expression Context Typing Slice Composition). It is important that we define

composition c{l o c{z syntactically. That is, the same definition as context substitution but

with each sub-context tagged with typing assumption contexts.

Proposition 19 (Expression Context Slice Composition is Associative). For all py, ps, and ps
then:

(P30 p2) op1 = p3 o (p20op1)
Proof. Trivial. O]

Definition 37 (Expression Context Typing Slice Substitution).

ot} = +7F ()

CI{e)} = ey CT{e} = e
(e1(C7) 1 {e} = (ex(eh)) 12 (€7 )2 {7} = (¢ - 7)%1)

ete. (similarly extended to all terms)

Lattice Structure

Definition 38 (Expression Context Typing Slice Joins and Meets). For expression typing slices
1 Jf2.

AUl = (e Uep)e

(,11‘1 M CQZ = (cp M)
Proposition 20 (Expression Context Typing Slices form Bounded Lattices). For any expres-
sion context C and typing assumption context F, the set of expression context typing slices ¢! of
C7 forms a bounded lattice with bottom element, the purely structural context and the function
to the empty typing assumptions, and top element el .

Proof. Componentwise definitions preserve universal algebras. O]

Interpreting Context Typing Slices by Contexts and Typing Assumption Contexts
A [e] function can be analogously defined as to expressions, replacing the gaps by _, 7, ().

C.3. Type-Indexed Slices

C.3.1. Type-Indexed Context Typing Slices
Definition 39 (Type-Indexed Context Typing Slices). Syntactically defined:

S=plpxS —>pxS
With any S only being valid if it has a full slice. The full slice of 8 is notated S and defined

recursively:
p=p
pL*S1— paxSy=proSLUpy oS,

Definition 40 (Type-Indexed Context Typing Slice Composition). For type-indezed context
typing slices 8§ and S". If S =p and 8" = p':

fop=FoF pop =poF
IfS=pand 8" =p) xS — phx S5
Sod&"=(popy) xS = (popy)*S;
If § = p1 %81 — po xSy
So8 =p1x(S108) = pa*(Sr08)



C.3 Type-Indexed Slices 62

Proposition 21 (Type-Indexed Composition Preserves Full Slice Composition). For type-
indexed slices § and S': o
Sod" =808

Proof. Trivial induction on the structure of §. O

C.3.2. Type-Indexed Expression Typing Slices
(Overloading the & notation)

Definition 41 (Type-Indexed Expressions Typing Slices). Syntactically defined:
Su=plpxS —>pxS
With any S only being valid if it has a full slice. The full slice of 8 is notated S and defined

recursively:
p=0p
p1* St — pa xSy = pr{Si} U pa{S2}

We retain left incremental composition/application as before (but applying to leaves p) but
do not retain global right composition.

C.3.3. Function Matching
Definition 42 (Slice Function Matching).
PP Oxp—=Oxp  pr,Oxp— Oxp
p1*51—>p2*82 >_>p1*51—>p2*82

C.3.4. Global Application

Global application and reverse application can be defined to allow converting between context
and expression slices.

Definition 43 (Reverse Application). For an expressions slice p. Reverse application |> con-
verts type-indexed context typing slices to type-indexed expressions typing slices:

p 1> p=p)

pl> (P81 = pexS)=pix(p|> S1) 2> pex(p|> )

Proposition 22 (Validity). If § is a valid type indexed context typing slice. For all expression
typing slices p, then p |> & is a valid type-indexed expression typing slice with the same
structure as §.

Proof. Trivial induction on the structure of §. O

Definition 44 (Application). For a function f from expression typing slices p to context typing
slices. Application $ converts type-indexed expression typing slices to type-indexed context typing

slices:
f$p="Ffp)
FS(p1*xS1 = paxS) =0 (fSp1oS) = Ox(f$ proSy)

The contexts py, p2 are eagerly applied down to the leaves p, to ensure the validity property.

Proposition 23 (Validity). If § is a valid type indezxed expression typing slice. For all functions
f from expression slices to context slices, then f $ S is a valid type-indexed context typing slice
with the same structure as §.

Proof. Trivial induction on the structure of §. [
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C.4. Checking Contexts

Definition 45 (Checking Context). For term e checking against 7: I' b e <= 7. A checking
context for e is an expression context C and typing assumption context F such that:

o C+# O.
o F(I') F C{e} = 7' for some 7'.

e The above derivation has a sub-derivation I'-e < 7.

Definition 46 (Minimally Scoped Checking Context). For a derivation I' e < 7, a mini-
mally scoped expression checking context is a checking context of e such that no sub-context is
also a checking context.

Proposition 24 (Minimally Scoped Checking Contexts Forms). All minimally scoped contexts,
have the following forms. Defined by a judgement: T' = C7 checks e against 7. With the
meaning: C7 is a minimally scoped checking context for I' e < 7. Defined:

ke <=7 'Fege=mn 7w m—17 T'Fey<=r
I'F O: 7 checks e against T I'F e (O) checks ey against T

I(z)=7 T\z:7m FC checks \x. e against T — T
['FC7 o (M. O\ checks e against T

Proof. Verity that each rule is a checking context, this follows very directly from the Hazel
typing rules. No rule has a sub-context also being a checking context by induction, with the
base cases being trivial: there is only one sub-context for the base case rules, O, which is by
definition not a checking context. O]

Proposition 25 (Checking Context of a Sub-term in a Derivation). If derivation I' - e = 7
contains a analysis sub-derivation I &= €' < 7' for sub-term €'. Then there is a unique mini-
mally scoped context C for €' and typing assumption context F for I such that:

o C{€'} is a sub-term of e, or is e itself.

e Derivation I' = e = 7 contains a sub-derivation for F(I") F C{e'} = 7", or is the
derivation itself: 7" =1,C{e'} = e, and F(I') =T.

Proof. Every minimally scoped checking context for ¢’ has a different structure. Hence, only
one of these matches with the structure of ¢’ in e. You simply need to verify that one always
exists (induction on the typing derivation), and that F(I') = I when C(€’) = e. O

C.5. Ciriterion 1: Synthesis Slices

Definition 47 (Synthesis Slices). For a synthesising expression, synthesiser. A synthesis slice
is an expression typing slice <7 of el which also synthesises T, that is, [Y] F [¢] = 7.

Proposition 26 (Minimum Synthesis Slices). A minimum synthesis slice of €' is a synthesis
slice p such that any other synthesis slices p' are at least as specific, p T p'. This minimum
always uniquely exrists.

Proof. Existence follows from bounded lattice structure, uniqueness follows from the uniqueness
of typing in Hazel. O]

Definition 48 (Type-Indexed Slices of Types).
b=

~

7T—>\7'2:(O—>D)*(7'1)—>(D—>O)*?5
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I'Fe= 7|8| esynthesising type 7 under context I' produces minimum type-indexed syn-

thesis slice &

z:7el rx:7€l
SConst SVar SVar?

F'Fe=10b|c IFx=7]a™ ko= 7|0°

Ce:nbe=mn|S [S)=¢ ~v@) =1

s TFX:m.e=m = 7| (AD:0. 02N\ %7 o Az 7). O\« 8,
Fe:mbe=mn|8 [S=¢ ~@) =1
St TFX:m.e=m =7 (AD: 0. )N\ 47— (A 0. O) * &y
F'Fer=7n|S
AP ei(ex) = 7| (O(H) oS SiEtlole TF ()= 7|0
el r I—zegue:?q my T TFi:; iT:(DT :0)oT

Figure C.1: Minimum synthesis slice calculation

Conjecture 2 (Correctness). IfI'F e = 7 then:
e'Fe= 7|pwhere p=¢" withyk¢ = 7.
e Forany p' =< T e’ such thaty' ¢ = 7 then pC p'.

C.6. Criterion 2: Analysis Slices

Definition 49 (Analysis Slice). For a term e analysing against 7: I' = e <= 7, and a minimally
scoped checking context C7 for e. An analysis slice is a slice ¢/ of C7 which is also a checking
context for e. That is:

o (I c{e} = 7 for some 7'.
e The above derivation has a sub-derivation for ' Fe < 7.

Conjecture 3 (Minimum Analysis Slices). The minimum analysis slice analysing e in a check-
ing context C7 is an analysis slice p such that for any other any other analysis slice p’ is at
least as specific, p C p'. This minimum always uniquely exists.

['CHe <« 7|8| e which analyses against type 7 in minimally scoped checking context C

and typing context I" has minimum type-indexed analysis slice §.

[' (O :7)7 checks e against T
DO Fest|(0—=(0:6))$7
[+ (e1(0))7 checks ey against o F(I) ke = 71 | Sy
S1P» L prxSy = pxd
T;(e1(0)7 Fey <= 1| (s7 0 (s(O)) 7)) $ pro Sy
Fz)=7 HICERF . e =T =7 |S ShLp*xS = p*xSh
[;C%20 (M. O)' b e <1 | psoSyo (A0 Q)= \em

As composition has been defined syntactically, then C% o (Az. O)7 is a valid way to pattern
match upon contexts, hence contexts for AFun can be deconstructed uniformly in such a way.

AAnnot

AApp

AFun

Figure C.2: Minimum analysis slice calculation
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Issues with checking equality of functions might arise in implementing this. But, typing
assumption contexts can be made intensional by assuming finite domain. It is probably also
possible to remove function equality checks entirely.

Conjecture 4 (Correctness). If C is a checking context for e and I' = e < 7. Then I';C +
e<=71|8 and S is the minimum analysis slice of e.

C.7. Criterion 3: Contribution Slices

Definition 50 (Contribution Slices). For I' - e = 7 containing sub-derivation I F €' < 7'
with checking context C.

A contribution slice of €' is an analysis slice for € in C paired with an expression typing
slice ¢V such that:

e ¢ is a slice of €, that ¢ C €.

e Under restricted typing context v, that ¢ checks against any 75 at least as precise as 7'

Vry. T E1p = vk <7

A contribution slice for a sub-term €” involved in sub-derivation I & €"” = 7" where " # €' is
an expression typing slice """ which also synthesises 7" under ~", that v" + ¢" = 7. Further,
any sub-term of € which has a contribution slice of the above variety, is replaced inside ¢ by
that corresponding expression typing slice.

The synthetic parts of these slices can be calculated in exactly the same way as synthesis
slices, except now also considering the subsumption rule. The analytic parts are regular analysis
slices.

The subsumption rule synthesises a type for some term, then checks consistency with the
checked type. This is where the dynamic portions can be omitted, to give a contribution slice
for the checked term. Representing contribution slices with the judgement I' F e = 7 |¢ & and
[CFle <« 71|cSe | S, where 8, is the expression slice part and &, is the contextual part:

F'Fe=71lcss 7~7 IiCFe<=1]S8.
['CF e < 7' |¢ match(S,, 85) | S.

Where match takes the matches the right slice to have the same structure as the left slice,
expanding with funmatching if required:

match(p, p’) = p’

match(p, . — _) = [
match(- — _,p) =Oxp = Ox*p
match(cy x §1 — c3 % So, ¢} * S| — b x Sy) = 1 x match(Sy, S]) — co * match(Sy, $p)

C.8. Cast Syntax

The below demonstrates inserting synthesis and analysis slices, but contribution slices could
equally be used instead. Extend the cast syntax to casts between types and synthesis and or
analysis slices. The pair of slices explain why the cast was enforced, and they will always match
structurally with the annotated type.

To avoid conflict, analysis (contextual) slices are now notated A . Generally speaking a cast
will be from synthesised types to analysed expectations.

<7'1 | 81 | ﬂ1:>7'2 | ﬂQ | SQ>

If an analysis slice or synthesis slice are omitted, assume they are O? or [ respectively.

’Essentially, sub-terms that check against ? also synthesise 7. Defined this way to include the case of
unannotated lambdas (which do not synthesise).
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C.9. Elaboration

Nicely complements existing elaboration rules (fig. C.3).

Note that elaboration adds a new situation analysing left application parts. The ESApp
rule is split explicitly into the cases when 7 = 7, as the cast on d; need only be inserted in
this case. We are effectively adding in a new analysis slice for e; in O(ey) when e; synthesises
7. The fact it is a function is then derived from the outer context:

Definition 51 (Dynamic Synthesising Function Analysis Slice).

'+ e = ?
I'F O(eq) checks ey against 79 — T

['F(O:7)7 checks e against T

AFunDyn T (0(e2)” Fep <=7 — 7| 0x(0(0)7 = Ox (0())”

F'te=r7|8 ~d- A‘ e synthesises type 7 with synthesis slice & and elaborates to d and hole

context A. )
ESConst ESVar z:T E'
Tte=b|c?~cH0 Tho=7|2% ~a-0
Da:iribe=m|SwdiA [S]=¢ -1
ESFunUnused z:mbe=m|5H~ A[[ 2] =¢ v()
THEAz:mie =71 =72 | (AD: 0. O)Y? N\ 47 o (AD: 0. O) %82 ~» Az id 4 A
ESFun Lez:nbesn|fwdiA [S)= @)=n

FEXz:mi.e= 71 — 1| (AI:O. D)”/H'Y\z”'l * 71 = (Aw =7y, O)V'_"V\'““T{ * 8o~ Ar:iT.d A

kel =7 |8 TL W T2 — T S1p s p2xSe > pxS
T O(eg)Fel<=T2~>T‘ﬂ1wd1:‘r{|c§){‘ﬂ{4A1 T el(O)F€2¢Tg|ﬂgwd2:Té|c?£|ﬂé#A2

ESA
P T et (e2) = 7 = (di(r] | S] | Al=ra = 7 | A1 | pa %Sz — p# ) (da(7h | Sh | Ay=a | A2)) 4 1 U Ag
ESEHole 3
FQ)“=7~0%4 QD?dw)u = ()]
Fte=71|S~d4A
ESNEHole

TF(e)* = 7|02« (d) A u s ()]

u
id()
I Otthke<sr|Awd: 7|8 | A HA

ESAsc —
Trhe:r=7|[(0:0)oT~d(r |8 | A'=7|A)4A

Ie'rFe<=1|d~1:8| A" | AH| ein minimally scoped checking context C7 analyses against

type T with analysis slice A and elaborates to d of consistent type 7/ which has synthesis slice part
S’ and analysis slice part A’ (structurally matching the synthetic part).

iChkXz.e=7|A 7o 11 =12 AP pr*xAl — p2x A2
D,z:r; Co(Da. OYWINTTL e w iy | Ay w d 7l | S| A, A
[$5] =<7 y(z) =7 Al = AL o (Apt. O)F

EAFun y
Dy ChAte<=T|A~Ax:7m.d:m — 75| Ox 00 = Az O)Y?NTTL % 8 | pr* Ay — O* A 4 A
iCkXe.e=s7|A 17011 > T2 AP prxAl — p2*x Az
D,z:m; Co(Da. O INET e w iy | Ag o d 7l | S| A A
S =<7 z) =1 AL = AL o (Apt. 0)7
EAFunUnused [5:] (@) 2 2 0 (p )

D; ChAte<=T|AwAz:mid:m =75 | 0O+x00 = (A0 O)* 84 | p1* A1 — O A 4A
e () e#()* TyCre<=7T|A
Thte=7"|8"~dHdA T~T

EASubsume
Iy Che<=T7|A~d: 7|8 | match($', A) 4 A

LeH()<=1|A

EAEHole
0; CH()* <= 7|~ () ;7 | match(A, %) | A 4w :: 7T

u
id(T)
Fre=7|8~wd4A T;Ck(e)* <=71|A
; Ck(e)* < 7| A~ (d) ):T|match(ﬂ,mw)\ﬂ4u;:7[r}

EANEHole -
id(T

Figure C.3: Elaboration judgements
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The inserted cast on d; in ESApp goes from the actual synthesised type for d; (which
could be 7) to it’s corresponding function type. Both the analysis part requiring it to be
a function (any function) and the parts specifying its component types if synthesised are
retained. Analysis elaboration produces both synthesis and analysis slices as EAFun must
retain the argument context slice to explain unannotated functions, while the synthesis part is
determining unannotated functions’ output type.

C.10. Dynamics

Final forms, contextual dynamic, and hole substitution remain the same as the Hazel calculus.
But the cast transitions need to work with cast slices. The only difference is that instruction
transitions require the use of slice ground matching.

S P gomd 8’| & matches ground slices &’

T — T2 7é =7
L= To | prx S = prk So | py ok AL = py*k A
»oround 7 — 7| p1 ¥ (09 — py o 0| p} * struct([A,]) — pb * struct([As])

Where struct(p) takes the purely structural context slice of p.
Figure C.4: Ground type matching for slices

Future Work: When type-indexed synthesis slices are converted to type-indexed analysis
slices, they lose their incremental structure. A way to retain this would be beneficial. This
could be done by pairing synthesis slices with a global two-hole context.
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Hazel Bugs: Unboxing

When a final form (section 2.1.2) has a type, Hazel often needs to extract parts of the term
according to the type during evaluation.
For example, if a term is a final form of type list, then it could be either:

o A list literal: [1,2,3].
e A list with casts wrapped around it: [1,2,3]1([Int]l=[71).
o A list cons with indeterminate tail: 1::2::7.

Additionally, when the input is not a list at all, it returns DoesNotMatch, used in pattern
matching. Unboxing makes use of GADTSs to allow for varying output type depending on the
type that the final form is being unboxed upon.

Hazel Unboxing Bugs

While writing the search procedure I found various unboxing bugs in Hazel. Programs ex-
hibiting these were removed from the evaluation data, whereas some bugs were fixed by myself
(hence, not removing from the evaluation data).

For example, there was the following bug, affecting pattern matching. A list cons which
has an indeterminate tail would indeterminately match with any list literal pattern (of any
length), even when it is known for certain that it could never match. For example a list cons
1::2::7 represents lists with length > 2, but even when matching a list literal of length 0 or
1 it would indeterminately match rather than explicitly not match.

Pattern matching checks if each pattern matches the scrutinee with the following behaviour,
starting from the first branch:

e Branch matches? Execute the branch.
e Branch does not match? Try the next branch.

e Branch indeterminately matches? Cannot assume the branch doesn’t match so must stop
evaluation here. The match statement is then indeterminate.

Figure D.1 demonstrates a concrete example which would get stuck in Hazel, but does not need
to. I reported and fixed this, with my PR merged into the dev branch.

case 1::7

| [1 =>0

| x::xs => x
end

Figure D.1: Pattern Matching Bug
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Extended Pattern Matching Instantiation

This appendix contains notes on instantiating holes in a match expression according also to
the structure of the patterns in a match expression.

To implement this, the scrutinee needs to be matched against a pattern and instantiated
at the same time. Crucially, instead of just giving up during indeterminate matches, the
indeterminate part can be instantiated until it matches.

However, this is not always enough to actually allow destructuring using that branch in a
match statement. The possibility that more specific patterns could be present above the current
branch means the resulting instantiation might still be result in an indeterminate match. For
example, the following would be an indeterminate match:

case ?::7 | [ = [ | x::y::[1 = [] | x::xs => xs8

Figure E.1: More Specific Matches

To account for this, we can take ideas from pattern matrix techniques for producing ex-
haustivity warnings, [50]. That is, we could generate a set of patterns which explicitly do not
match any of the previous branches, then intersect those patterns with the current branch, and
instantiate according to this intersection.
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Supplementary Results and Corpus Data

Statistics on the corpus are found in fig. F.1.

Count Prog. Size Trace Length

Avg. Std. dev. Avg. Std. dev.
Unannotated 404 117 81 9 9
Annotated 294 117 76 9 9
Searched 203 120 77 10 10
(Total) 698 117 79 9 9

Figure F.1: Hazel Program Corpus

The averages for each search method over their successful programs for each implementation
are given in fig. F.2. Note that each method succeeds on differing sets of programs.

Averages Implementations
unit DFS BDFS 1IDFS BFS
Time ms 7.6 73 140 120
Major Heap mB 3.7 32 5.9 25
Minor Heap mB 66 680 1900 1300

Figure F.2: Benchmarks: Search Implementations

Cast are between slices ‘from’ a type ‘to’” a type. Their average sizes given in fig. F.3.

Averages Subdivisions
Ok Errors
unit | from to | from to
Cast Slice size | 55 1.2 59 1.5
Std. dev. 81 3.7 71 20
Proportion % 1 02 1 02
Std. dev. 1 05 1 04
(Unannotated)
Type Slice size | 48 63| 6.9 44
Std. dev. 11 13| 9.1 9.3
Proportion % 1 2 2 1
Std. dev. 1 1 1 1
(Annotated)

Figure F.3: Effectiveness: Cast Slices

Trace length and instantiation size data in fig. F.4.

DFS BDFS BFS IDFS

Witness Size Avg.
Std. dev.

Trace size Avg.
Std. dev.

1.1 1.9 1.4 2
1.2 2.3 1.4 2.3
33 32 11 17
35 33 24 )

Figure F.4: Witness & Trace Sizes

Some examples of programs in the trans

lated corpus are given in fig. F.5. All three were

examples where BDFS did not terminate, and are accompanied with their failure classification.
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type expr =
+ VarX
+ Sine(expr)
+ Cosine(expr)

e

Average(expr, expr)
in let exprToString : forall a -> expr -> [a] = typfun a -> fun e -> case e
| varX => []
| Sine(el) => exprToString@<a>(el)
| Cosine(el) => exprToString@<a>(el)
| Average(el, e2) =>_exprToStr1ng@<aﬁ(§fﬁ +€ exprToStr1ng@<ai(bjﬂ
end in ?

Depth-first bias caused the procedure to try mostly permutations of Sine(...) and
Cosine(...). The error was on the Average(...) branch, not found within the time limit.

(a) Witness Exists: prog2270.typed.hazel
type expr =
+ VarX
+ Times(expr, expr)

inmlet exR[ToString : expr -> String = fun e —>'Eé§é;e
L varx =0 xe .
(Times(elﬁ;iez)}=x_exprTOStr1ng¢?L) ++ " % " ++ exprToString(e2)

lend in 7

A tuple pattern is used when an expr is expected. Instantiation only tries value of type expr.
Further, another error exists inside this inaccessible branch.

(b) Dead Code — Wildcard: prog0080.typed.hazel

type expr =

+ VarX

+ Sine(expr)

+ Average(expr, expr)

+ MyExpr(expr, expr, expr, expr)
in let exprToString : expr -> String = fun e -> case e

| VarX => "x"

| Sine(m) => "sin(pix" ++ exprToString(m) ++ ")"

| Average(m, n) =>

"((" ++ exprToString(m) ++ "+" ++ exprToString(n) ++ ")/2)"

| MyExpr(m, n, o, p) => ?
end in let _ = exprToString(MyExpr((Varx,;f5éVarX))) in 7

Product arity inconsistency is present in inaccessible code bound
to the wildcard pattern.

(c) Dead Code — Pattern Cast Failure: prog0339.typed.hazel

Figure F.5: (Paraphrased) Failure Examples
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Unimplemented Usability Improvements & Extensions

Below are proposed improvements, which the architecture of both Hazel and the new features
can easily support:

Display type slices only upon request using the Hazel context inspector, showing the
analysing and synthesising types of the selected expression, see fig. 4.10.

Allow users to deconstruct type slices to query specific parts, e.g. select the just the
sub-slice explaining the return type of a function or just the function arrow part. This
could be done by selecting the type parts in the context inspector. This interaction would
help users really understand how code comes together to define it’s types.

Visualise graphs of cast dependencies, showing the ezecution context leading to a cast
error, summarising more concisely than full evaluation traces.

Provide a UI for the search procedure’s execution traces and instantiations, integrated
with Hazel’s trace visualiser. This could include trace compression for better readability
(e.g., skipping irrelevant function calls).

Implement key bindings to cycle through indeterminate evaluation paths more quickly.
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On Representing Non-Determinism

High Level Representation
Other high level representations, besides monads, include:

Logic Programming DSL: Languages like Prolog [17] and Curry [9] express non-determinism
by directly implementing choice via non-deterministic evaluation. Prolog searches via back-
tracking, while Curry abstracts the search procedure.

There are ways to embed this within OCaml. Inspired by Curry, Kiselyov [22] created a
tagless final style [41] domain specific language within OCaml. This approach fully abstracts
the search procedure from the non-deterministic algorithm constructs.

Delimited Continuations: Delimited continuations [6, 70] are a control flow construct that
captures a portion of the program’s execution context (up to a certain delimiter) as a first-
class value, which can be resumed later (in OCaml, a function). This enables writing non-
deterministic code by duplicating the continuations and running them on each possibility in a
choice.

Effect Handlers: Effect handlers allow the description of effects and factors out the handling
of those effects. Non-determinism can be represented by an effect consisting of the choice and
fail operators [8, 37], while handlers can flexibly define the search procedure and accounting
logic, e.g. storing solutions in a list. As with delimited continuations, to try multiple solutions,
the continuations must be cloned.

Reasoning Against

Direct implementation: This would not allow for easily abstracting the search order and
would obfuscate the workings of the indeterminate evaluation and instantiation algorithms.
Some sort of high level representation is also massively beneficial for readability and under-
standing.

Effect handlers: Multiple continuation effect handlers were not supported by Javascript of
OCaml (JSOO).!

Continuations: Directly writing continuations is difficult and generally more unfamiliar to
OCaml developers as opposed to monadic representations.

Optimised DSL: Introducing a formal DSL including optimisations, such as the proposed
Tagless-Final DSL [41, 22|, is very complex. However, this would allow more flexibility in
writing non-deterministic evaluation, with some optimisations made automatically by the DSL.

!An important dependency of Hazel.
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Over the all branches, 275 commits, excluding merges, were made. Below is a list of merges
performed from the Hazel main branch during development and hours taken resolving conflicts
with my work. Major merges are in bold, those in red introduced bugs.

Date
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
08/04/25
07/04/25
06/04/25
06/02/25
31/01/25
17/12/24
16/12/24
11/12/24

Hash
a8efff7cbfdc87eaab3e57d8895562aed1{83a49

d3da061988cb0d4174a36282d9588d20d11d8ebd

33d80b9ae3faTade69bbefeeldccl0aaaebelldl
96adccll11a650ed2d709a965adcacl4e7197cech
2d1ab30445ecceb5ce3d0f79b2b714031{d762af0
451e6f76b56874ec3ffa02002cf6a4013193d9d9
117f689dda9794515b5c464d246a792e67416551
672{7ed7814a42b93f3edefada390534c25d35ad
971763990ead191077249¢72740b3ad6a657dfda
7404b6cfdc3c4b683aa6723532eb62ca7085e33f
5f18db680913ce8bel1d795d20bd54bf2f5e89f01
£197b65e0fb00fbc7c86a15005cd6a7ed376acd6
fbf415ea3347971672¢50665ae4616d98409f087
661eae7621e509d762715eeecd56888078faf9b8
£288788ae026a18bc3cd361dabel2ee716cc8723
b671df993eal9171c21cd248e6857ad932bafof3
d7a2e2a242a474c0e50abec8659004a7ee2ab034
18185d1623d79bed7e7282aae7d0b1{77c4ed88
f082201f1cf606068bb037a0dalc896f585¢4974
c6f23de39b5e64e352e4d7cbab5082cc50£3b658
0dd744b1c28calcl1dfb6368051633dcc56b8353
al45ac508b5a50b132f463b2ad670d6eaa3d3b84
8b189bd667ac0f1a91a18781bb5db183c58ba29f

Time Spent

Om
15m
20m

45m
50m
2h 15m

Om
Om
Om
Om
10m
Om
Om
10m
Om
Om
Th
10m
30m
10m
Om
Om

5h

Description

Formatting fixes

Updated Dependencies
Probes & Live Projectors
Syntax Factory

Id tagging a type parameter
Pattern coverage rework
Context inspector fixes
Double parenthesisation fixes
Code coverage settings
Bring back function names
Unboxing fixes

Code coverage support

Cast & TypFun bugfix
Make join symmetric

Editor statics fixes
Structure editor polishing
Labelled Tuples
Evaluator clean-up

Fix generalised closures
Add builtins & bugfixes
Add tests

Stepper Ul fixes

MVU UI overhaul
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Project Proposal

Description

This project will add some features to the Hazel language [2]. Hazel is a functional research
language that makes use of gradual types to support unusual features such as: holes (code
placeholders) to give type meaning to incomplete programs. Importantly for this project, all
Hazel programs, even ill-typed or incomplete programs, are evaluable. This allows dynamic
reasoning about ill-typed programs via evaluation traces with the potential to improve the
user’s understanding of why ill-typed programs go wrong. See example below:

let rec sum : Int -> Int = fun n ->
if n == 0 then

true // Type error statically caught and correctly localised
else
n + sum(n - 1)
in sum(2)

But evaluation is still possible; see below a (compressed) trace to a stuck value exhibiting a
cast error:

sum(2) —*2 + sum(]_) —*2 4+ (1 + true(BooléInw)

This project aims to exploit further this potential by providing some extra features to
both: aid with finding values/inputs that demonstrate why type-errors were found (type-error
witnesses) and linking the evaluation traces back to source code. But is not expected to directly
measure the usefulness of such evaluation traces themselves in debugging, nor is the design space
for a Hazel debugger inspecting and interacting with traces to be explored.

Searching for type-error witnesses automatically is the main feature provided by this project,
inspired by Seidel et al. [32]. The intended use of this is to automatically generate values (for
example, function arguments) that cause ill-typed programs to ‘go wrong’ (lead to a cast error).
More specifically, the search procedure can be thought of as evaluating a special hole which
refines its type dynamically and non-deterministically instantiates itself to values of this type
to find a value whose evaluation leads to a general cast error — ‘general’ meaning excluding
trivial cast errors such as generating a value that doesn’t actually have the refined expected
type.

Such a search procedure is undecidable and subject to path explosion, hence the success
criteria (detailed below) does not expect witnesses to be provided in general, even if they
do exist. Sophisticated heuristics and methods to limit path explosion to support large code
samples is not a core goal.

Formal semantics of this procedure and associated proofs is an extension goal, consist-
ing of preservation proofs and witness generality proofs (formalising the notion of generality
mentioned previously).

Secondly, cast slicing will track source code that contributed to any cast throughout the
cast elaboration and evaluation phases. In particular, this allows a cast involved in a cast error
relating to a type-error witness to point back to offending code. This is expected in some sense
to be similar to blame tracking [47], error and dynamic program slicing [58, 74|, although these
are not directly relevant for this project.

Work required for the creation of an evaluation corpus of ill-typed hazel programs, requiring
manual work or creation of automated translation and/or fuzzing tools, is timetabled.

Starting Point

Only background research and exploration has been conducted. This consists of reading the
Hazel research papers [2] and various other related research topics including: gradual types,
bidirectional types, symbolic evaluation, OCaml error localisation and visualisation techniques.

More research, into the Hazel codebase in particular, and concrete planning is required and
is timetabled accordingly.
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Success Criteria

Core goals are the minimum expected goals that must be completed to consider this project a
success. This corresponds to a working tool for a large portion of Hazel.

Extension goals will be timetabled in, but are relatively more difficult and not required for
the project to be considered a success.

First, I give some definitions of terms:

e Core Calculus — The formal semantics core of Hazel as referred to by the Hazel research
papers [24].

e Basic Hazel — A Hazel subset consisting of the core calculus, product and sum types, type
aliases, bindings, (parametric) lists, bools, int, floats, strings, and their corresponding
standard operations.

e Full Hazel — Hazel, including Basic Hazel plus pattern matching, explicit impredicative
system-F style polymorphism and explicitly recursive types.

e Core Corpus — A corpus of ill-typed Hazel programs that are similar in complexity and
size to student programs being taught a functional language, e.g. (incorrect) solutions to
the ticks in FoCS. This will include examples in Basic or Full Hazel as required.

e Extended Corpus — A corpus of ill-typed Hazel programs that are larger in size, more
akin to real-world code.

e Evaluation Criteria — Conditions for the search procedure to meet upon evaluation:
1. Must have reasonable coverage — success in finding an existing witness which is
correct and general.
2. Must find witnesses in an amount of time suitable for interactive debugging — in-line
with build-times for a debug build of existing languages.
Core Goals

e Success criteria for Cast Slicing — Cast slicing must be correct (slices must include all
code involved in the cast) and work for all casts, including casts involved in cast errors.
Informal reasoning in evidence of satisfying these conditions is all that will be required.

e Success criteria for the Search Procedure — The procedure must work for Basic Hazel,
meeting the Evaluation Criteria over the Core Corpus. Analysis of some classes of
programs for which witnesses could not be generated is also expected.

Extension Goals

e Search Procedure Extensions — Support for Full Hazel under the same criteria as above.

e Search Procedure Performance Extensions — Meeting of the Evaluation Criteria over
an Extended Corpus

e Formal Semantics — The specification of a formal evaluation semantics for the search
procedure over the Core Calculus. Additionally, a preservation and witness generality
proof should be provided.

Work Plan
21st Oct (Proposal Deadline) — 3rd Nov

Background research & research into the Hazel semantics, cast elaboration, type system, and
codebase. Produce implementation plan for cast slicing and the search procedure for the Core
Calculus. This includes an interaction design plan, expected to be very minimal.

Milestone 1: Plan Confirmed with Supervisors
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4th Nov — 17th Nov

Complete implementation of Cast Slicing for the Core Calculus. Write detailed reasoning for
correctness, including plan for Basic Hazel. Add unit testing.
Milestone 2: Cast slicing s complete for the Core Calculus.

18th Nov — 1st Dec (End of Full Michaelmas Term)

Complete implementation of the search procedure for the Core Calculus.
Milestone 3: Search Procedure is complete for the Core Calculus.

2nd Dec — 20th Dec

Extension of both cast slicing and the search procedure to Basic Hazel.
Milestone 4: Cast slicing € search procedure are complete for Basic Hazel

21st Dec — 24th Jan (Full Lent Term starting 16th Jan)

Basic Ul interaction for the project. Drafts of Implementation chapter. Slack time. Expecting
holiday, exam revision, and module exam revision. Should time be available, the Formal
Semantics extension will be attempted.

Milestone 5: Implementation chapter draft complete.

25th Jan — 7th Feb (Progress Report Deadline)

Writing of Progress Report. Planning of evaluation, primarily including decisions and design of
tools to be used to collect/create the Core Corpus and planning the specific statistical tests
to conduct on the corpus. Collected corpus and translation method will be one of:

1. Manual translation of a small ill-typed OCaml program corpus into ill-typed Hazel.
2. Manual insertion of type-errors into a well-typed Hazel corpus.

3. Collection of a well-typed Hazel corpus.
Tools: A Hazel type fuzzer to make the corpus ill-typed.

4. Collection of a well-typed OCaml corpus.
Tools: OCaml — Hazel translator/annotator which works with well-typed OCaml. A
Hazel type fuzzer.

5. Collection of an ill-typed OCaml corpus.
Tools: OCaml — Hazel translator which works with ill-typed OCaml. This would NOT
be expected to be an implicitly typed Hazel front-end which maintains desireable properties
like parametricity.

Milestone 6: Evaluation plan and corpus creation method confirmed with supervisors.
Milestone 7: Underlying corpus (critical resource) collected.

8th Feb — 28th Feb

Implementation of the required tools for evaluation as planned. Some existing code or tools
may be re-used, such as the OCaml type-checker.
Milestone 8: Core Corpus has been collected.

1st Mar — 15th Mar (End of Full Lent Term)

Conducting of evaluation tests and write-up of evaluation draft including results.
Milestone 9: Evaluation results documented.
Milestone 10: Evaluation draft complete.

16th Mar — 30th Mar

Drafts of remaining dissertation chapters. If possible, collection and evaluation of Extended
Corpus using the same tools as the Core Corpus.
Milestone 11: Full dissertation draft complete and sent to supervisors for feedback.
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31st Mar — 13th Apr

Act upon dissertation feedback. Exam revision.
Milestone 12: Second dissertation draft complete and send to supervisors for feedback.

14th Apr — 23rd Apr (Start of Full Easter Term)

Act upon feedback. Final dissertation complete. Exam revision.
Milestone 13: Dissertation submitted.

24th Apr — 16th May (Final Deadline)

Exam revision.
Milestone 14: Source code submitted.

Resource Declaration

e Underlying Corpus of either: Well-typed OCaml programs, Ill-typed OCaml programs,
Hazel programs. For use in evaluation. The required tools or manual translation to
convert these into the ill-typed Hazel Core Corpus are detailed and allocated time in
the timetable.

e Hazel source code. Openly available with MIT licence on GitHub [3].

e My personal laptop will be used for development, using GitHub for version control and
backup of both code and dissertation. I accept full responsibility for this machine and I
have made contingency plans to protect myself against hardware and/or software failure.
A backup pc is available in case of such failure.
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