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Decomposable Type Highlighting for Bidirectional Type and
Cast Systems
MAX CARROLL, University of Cambridge, UK
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PATRICK FERRIS, University of Cambridge, UK

We explore how to provide programmers with an interactive interface for explaining the process by which

static types and dynamic casts are derived, with the goal of improving the debugging of static and dynamic

type errors. To this end, we define mathematical foundations for a decomposable highlighting system within

a bidirectional system and show how these can be propagated through dynamic types in a cast system. Our

prototype implementation in the gradually typed Hazel language includes a web-based user interface, through

which we highlight the importance of type-level debugging.

1 INTRODUCTION
In static typing, blame for type errors is typically localised to a single location in the code. However,

this localisation may be misleading, as the actual cause of the error might be rooted in a broader

context. For example, in OCaml 65% of type errors are related to multiple locations [21] and

furthermore, the errors only state the expected types without explanation for why they occur. In

dynamic typing, errors do not typically specify any source code context that caused them, instead

relying on the interpretation of (potentially complex and extensive) execution traces.

Vision: We seek to improve user understanding of static and dynamic type systems and type

errors by providing a formally complete and decomposable highlighting system for bidirectional

type systems (type slicing) and propagation of this information through dynamic cast systems

(cast slicing). This would allow users to interactively explore why an expression has been typed by

decomposing the highlighted segments by their influence on the expression’s type, inspecting only

the particular parts they do not understand. Further, in languages with dynamic type information,

this highlighting information can be propagated through, for example, dynamic casts, providing

source code context to explain why a cast was executed during evaluation.
1

Progress: This paper lays out our approach to buildingmathematical foundations usingHazel [1], a

research language that allows incomplete programs (with holes) with a focus on liveness, interaction

design [3, 11, 12] and learning [8, 16]. Hazel is gradually typed, so these highlighting methods

can be explored for explaining both static and dynamic types (and type errors). However, the

foundations of this work apply more generally to many bidirectional type systems and cast systems.

While this paper focuses on giving definitions and expected properties
2
of a formal foundation, a

preliminary implementation is also deployed at https://hazel.org/build/witnesses-type-slicing/ for

example usage.

2 BACKGROUND
First, we introduce the notions of bidirectional types, cast systems, gradual types, and the core

Hazel calculus for reference.

1
For either a compiler-generated or user-inserted cast.

2
No proof mechanisation has been performed as of yet. But ‘informal’ proofs of most properties have been explored.
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2 Max Carroll, Anil Madhavapeddy, and Patrick Ferris

𝑥 : 𝜏 ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝜏

(a) Variables synthesise their
type from the typing assump-
tions.

Γ ⊢ 𝑒 ⇐ 𝜏

Γ ⊢ 𝑒 : 𝜏 ⇒ 𝜏

(b) Annotations synthesise the
annotated type.

Γ ⊢ 𝑒 ⇒ 𝜏

Γ ⊢ 𝑒 ⇐ 𝜏

(c) Subsumption: A synthesis-
ing term checks against the
same type.

2.1 Bidirectional Type Systems
A bidirectional type system [7] takes on a more algorithmic definition of typing judgements, being

more intuitive to implement, while still allowing some amount of local type inference.

This is done in a similar way to annotating logic programs [20, pg. 123], by specifying themode of
the type parameter in a typing judgement, distinguishingwhen it is an input (type analysis/checking)
and when it is an output (type synthesis). We express this with two judgements, read respectively

as: 𝑒 synthesises an (output) type 𝜏 /analyses against an (input) type 𝜏 under typing context Γ:

Γ ⊢ 𝑒 ⇒ 𝜏 Γ ⊢ 𝑒 ⇐ 𝜏

Such languages should be mode correct3 [5] and will have three obvious rules. That variables can

synthesise their type, if it is accessible from the typing assumptions. Annotated terms synthesise

their type from the annotation. Subsumption: a synthesising term must check against that same

type.

2.2 (Dynamic) Cast Calculi
A cast calculus adds casts between types to an operational semantics. More specifically, we consider

a dynamically typed system, with a distinguished dynamic type, notated ?.
Cast expressions will be denoted 𝑒 ⟨𝜏1⇒𝜏2⟩ for expression 𝑒 and types 𝜏1, 𝜏2, representing that 𝑒

has type 𝜏1 and is cast to new type 𝜏2. Compound type casts can be decomposed during evaluation.

For example, applying 𝑣 to a function wrapped in a cast decomposes the cast into casting the

applied argument and then the result:

(𝑓 ⟨𝜏1 → 𝜏2⇒𝜏 ′
1
→ 𝜏 ′

2
⟩)(𝑣) ↦→ (𝑓 (𝑣 ⟨𝜏 ′

1
⇒𝜏1⟩)⟨𝜏2⇒𝜏 ′

2
⟩)

Or if 𝑓 has the dynamic type, it should still be treated as a possible function:

(𝑓 ⟨?⇒𝜏 ′
1
→ 𝜏 ′

2
⟩)(𝑣) ↦→ (𝑓 (𝑣 ⟨𝜏 ′

1
⇒?⟩)⟨?⇒𝜏 ′

2
⟩)

Hence, casts around functions (type information) will be moved to the actual arguments at

runtime, meeting with casts casts on the argument, resulting in a cast error or a successful cast to a

corresponding value of the new type. The cast on the argument is reversed, in a similar vein to the

contravariance of function argument types under sub-typing.

2.3 Gradual Type Systems
A gradual type system [17, 18] combines static and dynamic typing. Terms may be annotated as

dynamic, marking regions of code ‘omitted’ from type-checking but still interoperable with static

code. For example, the following (pseudo-OCaml syntax) type checks:

1 let x : ? = 10 in /* Dynamically typed */

2 x ^ "str" /* Statically typed */

Where ^ is string concatenation expecting inputs to be string. But would then cause a runtime cast
error when attempting to calculate 10 ^ "str". Typically, the language is split into two parts:

3
Ensuring that they can be easily implemented algorithmically. That is, never require the ‘guessing’ of inputs.
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Decomposable Type Highlighting for Bidirectional Type and Cast Systems 3

• The external language – where static type checking is performed which allows annotating

expressions with the dynamic type.

• The internal language – where evaluation and runtime type checking is performed via cast

expressions.
4
The example above would reduce to a cast error :

10⟨Int⇒?⇏String⟩ ^ "str"

This is possible by introduction of a consistency equivalence relation notated 𝜏1 ∼ 𝜏2 used in place

of type equality in the typing rules. Consistency is a weakening of equality: all types are consistent

with the dynamic type ?, and compound types are consistent if their sub-parts are:

𝜏 ∼ ?

𝜏1 ∼ 𝜏 ′
1

𝜏2 ∼ 𝜏2

𝜏1 → 𝜏2 ∼ 𝜏 ′
1
→ 𝜏 ′

2

Finally, the static type information needs to be encoded into casts to be used in the dynamic

internal language, for which the evaluation semantics are defined. This is done by elaboration,
Γ ⊢ 𝑒 ; 𝑑 : 𝜏 read as: external expression 𝑒 is elaborated to internal expression 𝑑 with type 𝜏 under
typing context Γ. For example, to insert casts around function applications:

Γ ⊢ 𝑒1 ; 𝑑1 : 𝜏1 Γ ⊢ 𝑒2 ; 𝑑2 : 𝜏
′
2

𝜏1 ▶→ 𝜏2 → 𝜏 𝜏2 ∼ 𝜏 ′
2

Γ ⊢ 𝑒1 (𝑒2) : 𝜏 ; (𝑑1⟨𝜏1⇒𝜏2 → 𝜏⟩)(𝑑2⟨𝜏 ′2⇒𝜏2⟩) : 𝜏
Where ▶→ explicitly pattern matches function types, including ? where ? ▶→ ? → ?. We place a

cast on the function
5 𝑑1 to 𝜏2 → 𝜏 and on the argument 𝑑2 to the function’s expected argument type

𝜏2 to perform runtime type checking of arguments. Intuitively, casts must be inserted whenever

type consistency is used, but deciding which casts to insert is non-trivial [6].

The runtime semantics of the internal expression is that of the dynamic cast system discussed

above (2.2). A cast is succeeds if and only if the types are consistent.

2.4 The Hazel Calculus
Hazel is built upon a bidirectional and gradually typed core lambda calculus [13]. It additionally

includes holes, which can both be typed and treated as an indeterminate final form (value), al-

lowing evaluation to proceed around them seamlessly. Errors can be treated as holes (i.e. with

dynamic/unknown type) to allow for continued evaluation.

The core calculus [13] is a gradually and bidirectionally typed lambda calculus. Therefore it has a

gradual and locally inferred bidirectional external language elaborated to an explicitly typed internal
language including cast expressions. Holes will also be notated by ? and naturally synthesise the

dynamic type.
6

3 PRELIMINARY IMPLEMENTATION
Next, we briefly demonstrate, by example in Hazel, the ideas of type and cast slicing, before diving

into the mathematical foundations. Figure 2 shows the type slices of four sub-expressions at the

cursor (in red). Typing of a sub-expression is done under typing assumptions; the UI also highlights

the type slice of a variable or type definition if the assumption is required in order to type check.
7

4
i.e. the proposed dynamic type system above.

5
This cast is required, as if 𝜏1 = ? then we need a cast to realise that it is even a function. Otherwise 𝜏1 = 𝜏2 → 𝜏 and the

cast is redundant.

6
Notation here differs from the original Hazel paper [13], in order to be consistent with Hazel UI. Hole meta-variables and

non-empty holes are of little interest to this paper, so are omitted.

7
For example, the IntOption type definition, or the hd binding, in fig. 2



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Max Carroll, Anil Madhavapeddy, and Patrick Ferris

(a) None synthesises IntOption due to it being a
value of IntOption. The assumption that None has
type IntOption results in the slice of its definition
to also be highlighted, notice also the inclusion
of the alias binding for IntOption

.

(b) The function synthesises [Int]→ IntOption

due to its [Int] annotation and that the match
branches synthesis IntOption. Both branches pro-
vide the same type information, so only one
branch (the last) is highlighted.

(c) The variable hd synthesises [Int]→ IntOption

by assumption similarly to (a). The slice of the
definition of hd is also highlighted.

(d) The list input is expected to be an [Int] as it is
applied to hd which is a function annotated with
input type [Int].

Fig. 2. Type Slicing Examples

Casts between types are inserted around expression, or explicitly by the programmer. Type

slices can be associated with these casted types, highlighting the source code that enforced their

automated insertion by the compiler during elaboration, or the corresponding cast written in the

code directly by the programmer. Figure 3 demonstrates two simple examples, the first of which

shows how cast slicing could be use to perform error highlighting for dynamic errors.
8

(a) A simple cast error blaming the plus operator
for requiring the integer cast.

(b) A hole (notated ‘?’) cast to Int due to being
the argument of a mapped function annotated
with an Int input.

Fig. 3. Cast Slicing Examples

4 TYPE SLICING THEORY
This section details the underlying mathematical foundation, first defining some preliminary

constructs, used to define two core slicing criteria: Synthesis Slices, and Analysis Slices, which
minimally highlight the parts (slice) of a term directly causing the term to synthesise a type or of its
context

9
enforcing it to analyse against some type.

8
Both these examples select the type being casted to. But, the system works equally well selecting the castee type instead;

however, the Hazel UI does not yet have a way to select the castee type.

9
The code surrounding the term.
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Decomposable Type Highlighting for Bidirectional Type and Cast Systems 5

4.1 Expression Typing Slices
First, we introduce what slices are. The aim is to provide a formal representation of term highlighting.

4.1.1 Term Slices. A term slice is a term with some sub-terms omitted. The omitted terms are those

that are not highlighted. For example, if my slicing criterion is to omit terms which are typed as Int,
then the following expression highlights as shown on the left. This is encoded, on the right, by

representing omitted sub-terms by gap terms, notated 2:

(𝜆 𝑥 : Int . 𝜆𝑦 : Bool. 𝑥 ) ( 1 ) (𝜆2. 𝜆𝑦 : Bool. 2) (2)
We can then define a precision partial order [10] on term slices: 𝜍1 ⊑ 𝜍2 meaning 𝜍1 is less or

equally precise than 𝜍2. That is, 𝜍1 matches 𝜍2 structurally except that some sub-terms may be gaps.

For example:

2 ⊑ 2 +2 ⊑ 1 +2 ⊑ 1 + 2

Lattice Structure: For any complete term 𝑡 (having no gaps), the slices of 𝑡 form a bounded lattice
structure [4]. That is, every pair 𝜍1, 𝜍2 has a join 𝜍1 ⊔ 𝜍2 and meet 𝜍1 ⊓ 𝜍2. In general, not all slices

have joins: 1 ⊔̸ 2, but do have meets as 2 ⊑ 𝜍 for all 𝜍 .

4.1.2 Typing Assumption Slices. Expression typing is performed given a set of typing assumptions.
Therefore, in addition, we also desire a slice taking the relevant assumptions. We represent typing

assumptions by partial functions mapping variables to types. Hence, their slices are just partial

functions to type slices. A slice must map a (possibly equal) subset of the variables to less or equally

precise types. Precision, meets, and joins, can be defined pointwise:

Definition 4.1 (Typing Assumption Slice Precision). For typing assumption slices 𝛾1, 𝛾2. Where

dom(𝑓 ) is the set of variables for which a partial function 𝑓 is defined:

𝛾1 ⊑ 𝛾2 ⇐⇒ dom(𝛾1) ⊆ dom(𝛾2) and ∀𝑥 ∈ dom(𝛾1). 𝛾1 (𝑥) ⊑ 𝛾2 (𝑥)

Definition 4.2 (Typing Assumption Slice Joins and Meets). For typing slices 𝛾1, 𝛾2, and any variable

𝑥 :

• If 𝛾1 (𝑥) = ⊥ then (𝛾1 ⊔ 𝛾2) (𝑥) = 𝛾2 (𝑥) and (𝛾1 ⊓ 𝛾2) (𝑥) = ⊥.
• Analogously if 𝛾2 (𝑥) = ⊥.
• Otherwise, (𝛾1 ⊔ 𝛾2) (𝑥) = 𝛾1 (𝑥) ⊔ 𝛾2 (𝑥).

Again, slicing complete typing assumptions Γ forms a bounded lattice. In general, some slices

have no join: consider 𝑥 : Int and 𝑥 : String.

4.1.3 Expression Typing Slices. An expression typing slice, 𝜌 , is a pair, 𝜍𝛾 , of a term slice and a

typing slice. Precision, joins and meets, can be extended componentwise to term typing slices with

all the same properties. These slices are the core construct for synthesis slices.

4.1.4 Typing. Expression slices can be type checked under the type assumption slices by replacing

gaps 2 by: holes of any meta-variable ? in expressions, fresh variables in patterns, and the dynamic

type in types (notated by J−K). Other (non-gradual) systems require different interpretations,

for example, a value of polymorphic type ∀𝛼.𝛼 could be used in place of gaps. Some form of

polymorphism is required in order to determine at what point we have removed somuch information

that the sliced term has a more general (more polymorphic) type than before.

Definition 4.3 (Expression Typing Slice Type Checking). For expression typing slice 𝜍𝛾 and type 𝜏 .

𝛾 ⊢ 𝜍 ⇒ 𝜏 iff J𝛾K ⊢ J𝜍K ⇒ 𝜏 and 𝛾 ⊢ 𝜍 ⇐ 𝜏 iff J𝛾K ⊢ J𝜍K ⇐ 𝜏 .
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4.2 Context Typing Slices
An expression’s analysing type is enforced by its surrounding context. We must note a clash in

terminology between contexts of a term (the part of a program surrounding a sub-term, such as those

as used in contextual dynamics) opposing the typing contexts used to refer to typing assumptions

made during type checking in the standard literature. For clarity, we refer to the typing assumptions

as directly as is, and never refer to them as ‘contexts’.

For example, the type of the underlined expression below is enforced by the surrounding high-

lighted context (the annotation):

(𝜆𝑥.?) : Bool → Int

4.2.1 Contexts and Their Slices. We represent these surrounding contexts by a term context C,
which marks exactly one sub-term as #. Where C{𝑡} substitutes term 𝑡 for the mark # in C10

and

composition is defined as substituting contexts into contexts, notated infix by ◦.
Contexts extend to context slices analogously to term slices and are notated as 𝑐 . However, the

precision relation ⊑ is more restrictive, requiring the mark # to remain in the same structural

position. For example: #(2) ⊑ #(1), but # @ #(1). This can be concisely defined pointwise.

Joins and meets can be defined pointwise as before, still forming bounded lattices over complete

contexts. The lattice bottom is the purely structural context, consisting of only gaps with the mark

in the correct position. In general, in addition to joins, not all contexts have meets: # ⊓̸ #(2).

4.2.2 Typing Assumption Contexts and Their Slices. The accompanying typing notion can be

represented by endomorphisms on typing assumption slices. These functions represents which

relevant typing assumptions must be added, and those safely removable when typing an expression

within a context slice.

Precision, joins, and meets can be defined pointwise, forming bounded lattices on complete func-

tions as usual. The bottom element being the constant function to the empty typing assumptions.

4.2.3 Context Typing Slices. An expression context typing slice, 𝑑 , is a context slice with each sub-

context recursively tagged by typing assumption context slices. Then, retrieve the underlying

context with ctx(𝑑) and typing assumption context with typ(𝑑) 11
. As before, lattice relations are

defined componentwise. Gaps can be interpreted by holes during type checking analogously to

expression typing slices.

4.3 Indexed Type Slices
Decomposing slices of expressions with compound types (i.e. functions) according to their com-

ponent types is the core idea of this method. For example, the following context slice on the left

explains why the underlined term analyses Bool → Int, and the right is a sub-slice explaining only

the argument type:

(𝜆𝑥 .?) : Bool → Int (𝜆𝑥 .?) : Bool → Int

This has many uses which are core to both the user experience and the internal implementation:

• The programmer could use this to query sub-slices for only the sub-parts of the type of an

expression that they do not already understand, hence omitting unneeded information and

reducing the amount of highlighting. For example, if they knew why the argument of a

function was an integer, but not why the return type was.

10
Only allowed if the marked position expects a term of the same class as 𝑡 (pattern Pat, type Typ, or expression Exp).

11
By composing all individual contexts up from the mark #
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• Casts are decomposed throughout evaluation: a cast between function typeswill be separated

into a cast between the two argument types and a cast between the two return types. Being

able to decompose slices allows only the relevant source code to be retained.

• Internally, calculating slices is easier when sub-slices are available, during function applica-

tion. See fig. 4.

The main property that indexed-slices should maintain is reconstructability: that slices can be

reconstructed from their sub-parts by joining the sub-slices. As sub-slices may slice different

regions of code, we pair them with contexts which place the sub-slices within the same context,

making them join-able. We only consider context slices here, but expressions slices are type-indexed
analogously. Context slices are syntactically defined to correspond with the structure of types:

S ::= 𝑑 | 𝑑 ∗ S → 𝑑 ∗ S

But they must be reconstructable. That is, the full slice of S, notated S must exist by joining the

sub-slices within their contexts:

𝑑 = 𝑑 𝑑1 ∗ S1 → 𝑑2 ∗ S2 = 𝑑1 ◦ S1 ⊔ 𝑑2 ◦ S2

4.4 Synthesis Slices
Synthesis slices aim to explain why an expression synthesises a type. They omit all sub-terms which

analyse against a type retrieved from synthesising some other part of the program. For example, the

following term synthesises a Bool → Bool type, and the variable 𝑥 : Int and argument are irrelevant:

(𝜆 𝑥 : Int . 𝜆𝑦 : Bool. 𝑦) ( 1 )

Definition 4.4 (Synthesis Slices). For a synthesising expression, Γ ⊢ 𝑒 ⇒ 𝜏 . A synthesis slice is an

expression typing slice 𝜍𝛾 of 𝑒Γ which also synthesises 𝜏 , that is, J𝛾K ⊢ J𝜍K ⇒ 𝜏 .

Proposition 4.5. A minimum synthesis slice of Γ ⊢ 𝑒 ⇒ 𝜏 , under ⊑, exists.

4.5 Analysis Slices
A similar idea can be devised for type analysis, represented using context slices. After all, it is the
terms immediately around the sub-term where the type checking is enforced. For example, when

checking this annotated term on the left, the inner hole term ? (underlined) must be consistent with

Int due to the annotation and lambda constructor within its context, giving:

(𝜆𝑥 .?) : Bool → Int (𝜆 𝑥 . ? ) : Bool → Int

In other words, if the inner hole was type checked within the context slice, then it would still be
required to analyse against Int. However, the overall synthesised type of the whole context may

differ: the above would synthesise ? → Int vs. the original Bool → Int.

4.5.1 Checking Context. We only want to consider the smallest context scope that enforced the

type checking. For example, the below term has 3 annotations, but only the inner one enforces the

Int type on the integer 1. I refer to this as the minimally scoped checking context:

1 : Int : ? : Bool

Definition 4.6 (Checking Context). If Γ ⊢ 𝑒 ⇐ 𝜏 . Then, a checking context for 𝑒 is a typing context

𝑑 such that: ctx(𝑑) ≠ #, and typ(𝑑) (Γ) ⊢ ctx(𝑑){𝑒} ⇒ 𝜏 ′ for some 𝜏 ′ while still retaining the

sub-derivation for Γ ⊢ 𝑒 ⇐ 𝜏 .
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Definition 4.7 (Minimally Scoped Checking Context). For a derivation Γ ⊢ 𝑒 ⇐ 𝜏 , a minimally

scoped expression checking context is a checking context of 𝑒 such that no sub-context is also a

checking context.

Observant readers will notice that any expression has infinitely many checking contexts. But

importantly, there are only finitely many checking contexts and exactly one minimally scoped

checking context for a sub-expression which is itself (after substituting the sub-expression into its

checking context) a sub-expression of a particular program.

Definition 4.8 (Analysis Slice). For Γ ⊢ 𝑒 ⇐ 𝜏 with a minimally scoped checking context 𝑑 . An

analysis slice is a context slice 𝑑 ′ of 𝑑 where J𝑑 ′K is also a checking context for 𝑒 .

Proposition 4.9. A minimum analysis slice of Γ ⊢ 𝑒 ⇐ 𝜏 in a checking context 𝑑 , under ⊑, exists.
Fig. 4 demonstrates an example of how this works for a more complex situation where function

application enforces a type upon its argument.

(𝜆𝑥 : ?.𝜆𝑦 : Int.𝑦) (true)

(a) A function: synthesising Int → Int.

(𝜆 𝑥 : ? .𝜆𝑦 : Int.𝑦) ( true )

(b) Its synthesis slice.

(𝜆 𝑥 : ? .𝜆 𝑦 : Int. 𝑦 ) ( true )

(c) The sub-slice relating only to the input
part Int.

(𝜆 𝑥 : ? .𝜆 𝑦 : Int. 𝑦 ) ( true ) ( 1 )

(d) The analysis slice of the function’s argu-
ment (1) when applied. Uses the synthesis
sub-slice from (c).

Fig. 4. Demonstration: Analysis slice application uses synthesis slices

5 CAST SLICING THEORY
Cast slicing propagates type slice information during evaluation, by tagging casts types with type

slices. The first two criteria work together during elaboration, inserted depending on if the cast

component was derived from either type synthesis or analysis. The current rules are very involved,

but build directly upon the Hazel calculus elaboration semantics. Future work will aim to simplify

these rules.

Comparison with Blame: The idea of tagging information to casts is reminiscent of blame [19] in

gradual typing. Blame determines whether a cast error is caused by the expression within a cast

or the context around a cast, always blaming more dynamic code. Parallels between synthesis (of

the expression) and analysis (of the context) slices can be seen, but these are actually orthogonal

to blame, with type slicing concerning why casts are inserted. Future work could explore these

connections and the integration of blame, with applications for type error debugging: we could

point to exactly which portion of dynamic code (e.g. one particular static error inserted into a hole)

is responsible for the dynamic error.

6 THE HAZEL IMPLEMENTATION
The implementation is under active development, can be found on the witnesses-type-slicing
branch available at GitHub [2]. Hazel extends the core calculus with many advanced features

including:
12
Lists, Tuples, Labelled Tuples (records) [15, ch. 11.7-8], Sum Types [15, ch. 11.10], Type

12
As of July 2025
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Aliases, Pattern Matching, Explicit System F Style Polymorphism [15, ch. 23], Iso-Recursive Types

[15, ch. 22-23]. Type and cast slicing extends to these relatively simply, but, polymorphism and

recursive types will require further (less trivial) extensions to the meta-theory.

7 FUTUREWORK
Future work aims to build upon these mathematical foundations in order to improve and explore

the effectiveness of the human aspects of these highlighting systems.

Exploiting Decomposability in the UI:. The merits of this formal system stem from the ability to

deconstruct slices by their type. Uses include refining the highlighting to explain exactly which

code corresponds to a specific subpart of the expression’s type. For example, a user may understand

why an expression is a function, but not why it has a particular return type; conversely, they

may only not understand why the expression is a function, but not care about the argument or

return types themselves. We wish to further explore how to use this information to provide a more

intuitive and interactive UI for use in the Hazel editor. This may include further refinements such

as hiding, summarising, and jumping to the slices of variable definitions in an expression’s type

assumptions slice.

Polymorphism and Recursive Types: As previously mentioned, extending the meta-theory and

implementation to parametric polymorphic systems and recursive types is planned.

Decomposable Type Eliminators: The slice of a function application will include the application

and part of the slice of the function, all compressed within a single type constructor, and therefore

not decomposable (see sub-figure (b) in figure 4). In the future, we wish to improve this situation,

potentially by creating a direct correspondence between derivations and slices, allowing indexing

on both derivations and types. Then slices could be decomposable according to the typing rules,

for which an interactive UI could highlight code for each typing rule and even show/explain the

rules in a pop-up similarly to the Explain This framework in Hazel [16]. This would require an

entirely new, or at least major extension, to the presented theories in this paper.

Other ideas to deal with this which are purely to do with the UI, not requiring new formalisation,

include emphasising
13
the fundamental sub-expression that ’sourced’ the type (inside of the type

eliminator), For example, emphasising the inner lambda in fig. 4 (b).

Cast Slicing: Understanding how and why a cast was manipulated throughout evaluation requires

inspecting potentially long and complex evaluation traces. UI to simplify evaluation traces to focus

only on specific casts would be of use here. Additionally, there is scope to develop dynamic slicing
methods which would highlight minimal programs that evaluate to (a possibly less precise value)

involving the same cast. These could be more akin to dynamic slicing in imperative languages [9],

or in functional languages [14]. As Hazel can evaluate incomplete programs, the user would even

be able to run this minimal program, and work only with the simpler resulting trace.

User Study: While these methods appear to have intuitive use in understanding type systems

and type error debugging, the real-world effectiveness should be explored by user studies. A study

on the methods effectiveness for the learning aspect, involving new users (e.g. students) would be

feasible.
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